Properties

Label 2.2.ab_a
Base Field $\F_{2}$
Dimension $2$
Ordinary No
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $2$
Weil polynomial:  $1 - x - 2 x^{3} + 4 x^{4}$
Frobenius angles:  $\pm0.139386741866$, $\pm0.686170398078$
Angle rank:  $2$ (numerical)
Number field:  4.0.2312.1
Galois group:  $D_{4}$

This isogeny class is simple.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 16 26 416 1402 3952 22346 74048 258362 1132816

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 4 2 24 42 64 170 288 506 1104

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.