Properties

Label 2.2.a_ac
Base Field $\F_{2}$
Dimension $2$
$p$-rank $0$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $2$
Weil polynomial:  $1 - 2 x^{2} + 4 x^{4}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-2}, \sqrt{-3})\)
Galois group:  $C_2^2$

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 9 81 441 993 6561 16257 74529 263169 986049

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 1 9 25 33 97 129 289 513 961

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.