Properties

Label 2.19.an_dc
Base Field $\F_{19}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
Weil polynomial:  $( 1 - 7 x + 19 x^{2} )( 1 - 6 x + 19 x^{2} )$
Frobenius angles:  $\pm0.203259864187$, $\pm0.258380448083$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 182 127764 48315176 17156149920 6143598863402 2213711304831936 798975439788211322 288435376972587761280 104126843995038193192136 37589951156111042988102804

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 353 7042 131641 2481157 47054306 893836783 16983207601 322686128758 6131062620353

Decomposition

1.19.ah $\times$ 1.19.ag

Base change

This is a primitive isogeny class.