Properties

Label 2.19.an_cz
Base Field $\F_{19}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
Weil polynomial:  $1 - 13 x + 77 x^{2} - 247 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.0986133210333$, $\pm0.318874605641$
Angle rank:  $2$ (numerical)
Number field:  4.0.64389.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 179 125121 47489237 17014078701 6128624886224 2212876729285569 798996913370243249 288445608159578024949 104128030656023260494527 37590028970091756735864576

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 347 6925 130555 2475112 47036567 893860807 16983810019 322689806185 6131075312102

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.