Properties

Label 2.19.al_ck
Base Field $\F_{19}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
Weil polynomial:  $( 1 - 8 x + 19 x^{2} )( 1 - 3 x + 19 x^{2} )$
Frobenius angles:  $\pm0.130073469147$, $\pm0.388176076177$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 204 131376 47655216 16974304704 6126953978724 2213482610416896 799091751465814164 288449990483531192064 104127672854620178665776 37589962955782452689708976

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 9 365 6948 130249 2474439 47049446 893966901 16984068049 322688697372 6131064544925

Decomposition

1.19.ai $\times$ 1.19.ad

Base change

This is a primitive isogeny class.