Properties

Label 2.19.ak_cf
Base Field $\F_{19}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
Weil polynomial:  $1 - 10 x + 57 x^{2} - 190 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.173854422602$, $\pm0.405491683409$
Angle rank:  $2$ (numerical)
Number field:  4.0.820800.3
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 219 135561 48021444 17002738425 6130443137979 2213819494209936 799094906199094899 288446091332880808425 104127110457816217373604 37589922863120783333154441

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 10 376 7000 130468 2475850 47056606 893970430 16983838468 322686954520 6131058005656

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.