Properties

Label 2.17.aj_cc
Base Field $\F_{17}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
Weil polynomial:  $( 1 - 5 x + 17 x^{2} )( 1 - 4 x + 17 x^{2} )$
Frobenius angles:  $\pm0.292637436158$, $\pm0.338793663197$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 182 92092 25492376 7038775744 2014450139702 582215684866816 168354868337287814 48661349247531820800 14063198471181701378264 4064238953138390667693052

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 9 317 5184 84273 1418769 24120722 410282721 6975780001 118588837968 2015997643757

Decomposition

1.17.af $\times$ 1.17.ae

Base change

This is a primitive isogeny class.