Properties

Label 2.13.ah_bm
Base Field $\F_{13}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
Weil polynomial:  $( 1 - 4 x + 13 x^{2} )( 1 - 3 x + 13 x^{2} )$
Frobenius angles:  $\pm0.312832958189$, $\pm0.363422825076$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 110 33660 5239520 823996800 137389054550 23260576584960 3936690829551590 665461638360921600 112458674518542740960 19005016038068177934300

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 197 2380 28849 370027 4819034 62737591 815785921 10604807500 137858870957

Decomposition

1.13.ae $\times$ 1.13.ad

Base change

This is a primitive isogeny class.