Properties

Label 2.13.ah_bl
Base Field $\F_{13}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
Weil polynomial:  $1 - 7 x + 37 x^{2} - 91 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.278766070715$, $\pm0.3928435888$
Angle rank:  $2$ (numerical)
Number field:  4.0.35525.3
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 109 33245 5191561 822647525 137557260544 23277947169605 3937096540195081 665423657339063525 112455224289323433109 19004944405616091648000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 195 2359 28803 370482 4822635 62744059 815739363 10604482147 137858351350

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.