Properties

Label 2.13.ah_bd
Base Field $\F_{13}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
Weil polynomial:  $1 - 7 x + 29 x^{2} - 91 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.138271059594$, $\pm0.479742145051$
Angle rank:  $2$ (numerical)
Number field:  4.0.72557.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 101 29997 4815377 808029189 137973330176 23336034433173 3938794045074017 665419950171347877 112455794370804724637 19005082979348421660672

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 179 2191 28291 371602 4834667 62771107 815734819 10604535907 137859356534

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.