Properties

Label 1.8.f
Base Field $\F_{2^3}$
Dimension $1$
Ordinary No
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^3}$
Dimension:  $1$
Weil polynomial:  $1 + 5 x + 8 x^{2}$
Frobenius angles:  $\pm0.845080184244$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-7}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 14 56 518 4144 32494 263144 2094358 16783200 134210174 1073731736

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 14 56 518 4144 32494 263144 2094358 16783200 134210174 1073731736

Decomposition

This is a simple isogeny class.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^3}$.

SubfieldPrimitive Model
$\F_{2}$1.2.ab