Properties

Label 1.8.ae
Base Field $\F_{2^3}$
Dimension $1$
Ordinary No
$p$-rank $0$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2^3}$
Dimension:  $1$
Weil polynomial:  $1 - 4 x + 8 x^{2}$
Frobenius angles:  $\pm0.25$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-1}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 65 545 4225 33025 262145 2095105 16769025 134201345 1073741825

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 65 545 4225 33025 262145 2095105 16769025 134201345 1073741825

Decomposition

This is a simple isogeny class.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^3}$.

SubfieldPrimitive Model
$\F_{2}$1.2.c