Properties

Label 1.4.ae
Base Field $\F_{2^2}$
Dimension $1$
$p$-rank $0$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $1$
Weil polynomial:  $(1-2x)^{2}$
Frobenius angles:  $0.0$, $0.0$
Angle rank:  $0$ (numerical)
Number field:  \(\Q\)
Galois group:  Trivial

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 1 9 49 225 961 3969 16129 65025 261121 1046529

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 9 49 225 961 3969 16129 65025 261121 1046529

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.