Invariants
Base field: | $\F_{17}$ |
Dimension: | $1$ |
Weil polynomial: | $1+3x+17x^{2}$ |
Frobenius angles: | $\pm0.618522015261$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-59}) \) |
Galois group: | $C_2$ |
This isogeny class is simple.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
This isogeny class contains a Jacobian, and hence is principally polarizable.
Point counts of the abelian variety
$r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
$A(\F_{q^r})$ | 21 | 315 | 4788 | 83475 | 1422141 | 24131520 | 410318013 | 6975922275 | 118587733236 | 2015991528075 |
$r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
$C(\F_{q^r})$ | 21 | 315 | 4788 | 83475 | 1422141 | 24131520 | 410318013 | 6975922275 | 118587733236 | 2015991528075 |
Decomposition
This is a simple isogeny class.
Base change
This is a primitive isogeny class.