Properties

Label 1.16.af
Base Field $\F_{2^4}$
Dimension $1$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^4}$
Dimension:  $1$
Weil polynomial:  $1 - 5 x + 16 x^{2}$
Frobenius angles:  $\pm0.285098958592$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-39}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 12 264 4212 66000 1049052 16772184 268402692 4294884000 68719584492 1099513499304

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 12 264 4212 66000 1049052 16772184 268402692 4294884000 68719584492 1099513499304

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.