Properties

Label 1.16.ad
Base Field $\F_{2^4}$
Dimension $1$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^4}$
Dimension:  $1$
Weil polynomial:  $1 - 3 x + 16 x^{2}$
Frobenius angles:  $\pm0.377642706461$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-55}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 14 280 4214 65520 1046654 16771720 268449734 4295098080 68719640654 1099510027000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 14 280 4214 65520 1046654 16771720 268449734 4295098080 68719640654 1099510027000

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.