Properties

Label 1.16.ab
Base Field $\F_{2^4}$
Dimension $1$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^4}$
Dimension:  $1$
Weil polynomial:  $1 - x + 16 x^{2}$
Frobenius angles:  $\pm0.460106912325$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-7}) \)
Galois group:  $C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 16 288 4144 65088 1047376 16783200 268460656 4294896768 68719003024 1099512282528

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 16 288 4144 65088 1047376 16783200 268460656 4294896768 68719003024 1099512282528

Decomposition

This is a simple isogeny class.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^4}$.

SubfieldPrimitive Model
$\F_{2}$1.2.ab
$\F_{2}$1.2.b
$\F_{2^2}$1.4.ad