Learn more about

Refine search


Results (1-50 of 970 matches)

Next   Download to        
Label Polynomial Discriminant Galois group Class group
40.0.118...536.1 x40 + x38 - x34 - x32 + x28 + x26 - x22 - x20 - x18 + x14 + x12 - x8 - x6 + x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[11]$ (GRH)
40.0.102...625.1 x40 - x39 - x38 + 4x37 - 4x36 - 4x35 + 17x34 - 17x33 - 17x32 + 72x31 - 72x30 + 127x29 + 106x28 - 504x27 + 491x26 + 496x25 - 2088x24 + 2091x23 + 2090x22 - 8856x21 + 8855x20 + 8856x19 + 2090x18 - 2091x17 - 2088x16 - 496x15 + 491x14 + 504x13 + 106x12 - 127x11 - 72x10 - 72x9 - 17x8 + 17x7 + 17x6 + 4x5 - 4x4 - 4x3 - x2 + x + 1 \( 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22]$ (GRH)
40.0.373...536.1 x40 - x36 + x32 - x28 + x24 - x20 + x16 - x12 + x8 - x4 + 1 \( 2^{80}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[55]$ (GRH)
40.0.324...000.1 x40 - 3x38 + 8x36 - 21x34 + 55x32 - 144x30 + 377x28 - 987x26 + 2584x24 - 6765x22 + 17711x20 - 6765x18 + 2584x16 - 987x14 + 377x12 - 144x10 + 55x8 - 21x6 + 8x4 - 3x2 + 1 \( 2^{40}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[62]$ (GRH)
40.0.860...761.1 x40 - x39 + 2x38 - 5x37 + 5x36 - 10x35 + 17x34 - 17x33 + 34x32 - 45x31 + 45x30 - 23x29 + 22x28 + 45x27 - 157x26 + 250x25 - 585x24 + 969x23 - 1426x22 + 2565x21 - 3589x20 + 5130x19 - 5704x18 + 7752x17 - 9360x16 + 8000x15 - 10048x14 + 5760x13 + 5632x12 - 11776x11 + 46080x10 - 92160x9 + 139264x8 - 139264x7 + 278528x6 - 327680x5 + 327680x4 - 655360x3 + 524288x2 - 524288x + 1048576 \( 3^{20}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.124...736.1 x40 - 2x38 + 8x34 - 16x32 + 64x28 - 128x26 + 512x22 - 1024x20 + 2048x18 - 8192x14 + 16384x12 - 65536x8 + 131072x6 - 524288x2 + 1048576 \( 2^{60}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.124...736.2 x40 + 2x38 - 8x34 - 16x32 + 64x28 + 128x26 - 512x22 - 1024x20 - 2048x18 + 8192x14 + 16384x12 - 65536x8 - 131072x6 + 524288x2 + 1048576 \( 2^{60}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.271...136.1 x40 + 3x38 + 5x36 + 3x34 - 11x32 - 45x30 - 91x28 - 93x26 + 85x24 + 627x22 + 1541x20 + 2508x18 + 1360x16 - 5952x14 - 23296x12 - 46080x10 - 45056x8 + 49152x6 + 327680x4 + 786432x2 + 1048576 \( 2^{40}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.890...496.1 x40 - 25x36 + 441x32 - 3794x28 + 23626x24 - 66403x20 + 133864x16 - 62097x12 + 23622x8 - 155x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 5, 5]$ (GRH)
40.0.235...625.1 x40 - x38 - 8x36 + 17x34 + 55x32 - 208x30 - 287x28 + 2159x26 + 424x24 - 19855x22 + 16039x20 - 178695x18 + 34344x16 + 1573911x14 - 1883007x12 - 12282192x10 + 29229255x8 + 81310473x6 - 344373768x4 - 387420489x2 + 3486784401 \( 5^{20}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.771...000.1 x40 - 27x38 + 452x36 - 4707x34 + 35613x32 - 189939x30 + 758623x28 - 2202717x26 + 4873258x24 - 8161689x22 + 10602647x20 - 10506063x18 + 8018080x16 - 4542648x14 + 1926084x12 - 569703x10 + 122757x8 - 16992x6 + 1555x4 - 45x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[341]$ (GRH)
40.0.129...000.1 x40 - 20x38 + 230x36 - 1800x34 + 10625x32 - 49003x30 + 181750x28 - 547185x26 + 1349050x24 - 2717025x22 + 4465008x20 - 5912800x18 + 6247290x16 - 5116175x14 + 3173350x12 - 1380878x10 + 400970x8 - 52915x6 + 4850x4 - 75x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{68} \) $C_2^2\times C_{10}$ (as 40T7) $[11, 55]$ (GRH)
40.0.204...561.1 x40 - x39 - 3x38 + 10x37 - 10x36 - 30x35 + 127x34 - 127x33 - 381x32 + 1540x31 - 1540x30 + 5017x29 + 9192x28 - 47740x27 + 39883x26 + 133500x25 - 518980x24 + 534289x23 + 1583184x22 - 6478780x21 + 6419731x20 + 19436340x19 + 14248656x18 - 14425803x17 - 42037380x16 - 32440500x15 + 29074707x14 + 104407380x13 + 60308712x12 - 98749611x11 - 90935460x10 - 272806380x9 - 202479021x8 + 202479021x7 + 607437063x6 + 430467210x5 - 430467210x4 - 1291401630x3 - 1162261467x2 + 1162261467x + 3486784401 \( 3^{20}\cdot 11^{36}\cdot 13^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.339...000.1 x40 - 6x38 + 32x36 - 168x34 + 880x32 - 4608x30 + 24128x28 - 126336x26 + 661504x24 - 3463680x22 + 18136064x20 - 13854720x18 + 10584064x16 - 8085504x14 + 6176768x12 - 4718592x10 + 3604480x8 - 2752512x6 + 2097152x4 - 1572864x2 + 1048576 \( 2^{60}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.339...000.2 x40 + 6x38 + 32x36 + 168x34 + 880x32 + 4608x30 + 24128x28 + 126336x26 + 661504x24 + 3463680x22 + 18136064x20 + 13854720x18 + 10584064x16 + 8085504x14 + 6176768x12 + 4718592x10 + 3604480x8 + 2752512x6 + 2097152x4 + 1572864x2 + 1048576 \( 2^{60}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.130...936.1 x40 - 20x38 + 231x36 - 1812x34 + 10709x32 - 49280x30 + 181674x28 - 540148x26 + 1304886x24 - 2544812x22 + 3994121x20 - 4954644x18 + 4817692x16 - 3548680x14 + 1959963x12 - 753104x10 + 202622x8 - 30356x6 + 3025x4 - 60x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22, 110]$ (GRH)
40.40.130...936.1 x40 - 40x38 + 741x36 - 8436x34 + 66044x32 - 376960x30 + 1622694x28 - 5375528x26 + 13860054x24 - 27947920x22 + 44043506x20 - 53927016x18 + 50713585x16 - 35964944x14 + 18713229x12 - 6857500x10 + 1662386x8 - 240976x6 + 17560x4 - 480x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) trivial (GRH)
40.0.130...936.2 x40 - 4x38 + 15x36 - 56x34 + 209x32 - 780x30 + 2911x28 - 10864x26 + 40545x24 - 151316x22 + 564719x20 - 151316x18 + 40545x16 - 10864x14 + 2911x12 - 780x10 + 209x8 - 56x6 + 15x4 - 4x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 10, 110]$ (GRH)
40.0.130...936.3 x40 + 57x36 + 1280x32 + 14374x28 + 85046x24 + 259698x20 + 379157x16 + 222625x12 + 41990x8 + 820x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[110, 110]$ (GRH)
40.0.130...936.4 x40 + 65x36 + 1728x32 + 24166x28 + 190246x24 + 834866x20 + 1881661x16 + 1748889x12 + 328758x8 + 12220x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[2, 6820]$ (GRH)
40.0.130...936.5 x40 + 4x38 + 15x36 + 56x34 + 209x32 + 780x30 + 2911x28 + 10864x26 + 40545x24 + 151316x22 + 564719x20 + 151316x18 + 40545x16 + 10864x14 + 2911x12 + 780x10 + 209x8 + 56x6 + 15x4 + 4x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.130...936.6 x40 + 20x38 + 231x36 + 1812x34 + 10709x32 + 49280x30 + 181674x28 + 540148x26 + 1304886x24 + 2544812x22 + 3994121x20 + 4954644x18 + 4817692x16 + 3548680x14 + 1959963x12 + 753104x10 + 202622x8 + 30356x6 + 3025x4 + 60x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.130...936.7 x40 + 40x38 + 741x36 + 8436x34 + 66044x32 + 376960x30 + 1622694x28 + 5375528x26 + 13860054x24 + 27947920x22 + 44043506x20 + 53927016x18 + 50713585x16 + 35964944x14 + 18713229x12 + 6857500x10 + 1662386x8 + 240976x6 + 17560x4 + 480x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 10, 6820]$ (GRH)
40.0.130...936.8 x40 - 33x36 + 737x32 - 8954x28 + 78650x24 - 380787x20 + 1299056x16 - 1686377x12 + 1610510x8 - 161051x4 + 14641 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[2728]$ (GRH)
40.0.130...936.9 x40 - 9x36 + 81x32 - 729x28 + 6561x24 - 59049x20 + 531441x16 - 4782969x12 + 43046721x8 - 387420489x4 + 3486784401 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.243...000.1 x40 + 175x36 + 9273x32 + 161966x28 + 849466x24 + 1781941x20 + 1558024x16 + 496503x12 + 42966x8 + 1085x4 + 1 \( 2^{80}\cdot 5^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[155, 155]$ (GRH)
40.0.409...000.1 x40 + 60x36 + 1450x32 + 18060x28 + 123375x24 + 457507x20 + 869360x16 + 747925x12 + 218435x8 + 4075x4 + 1 \( 2^{80}\cdot 5^{68} \) $C_2^2\times C_{10}$ (as 40T7) $[11, 2255]$ (GRH)
40.0.438...361.1 x40 - x39 - 4x38 + 13x37 - 13x36 - 52x35 + 233x34 - 233x33 - 932x32 + 3861x31 - 3861x30 + 15577x29 + 34084x28 - 189189x27 + 142853x26 + 690196x25 - 2706561x24 + 2854017x23 + 11153924x22 - 47293389x21 + 46244813x20 + 189173556x19 + 178462784x18 - 182657088x17 - 692879616x16 - 706760704x15 + 585125888x14 + 3099672576x13 + 2233729024x12 - 4083417088x11 - 4048551936x10 - 16194207744x9 - 15636365312x8 + 15636365312x7 + 62545461248x6 + 55834574848x5 - 55834574848x4 - 223338299392x3 - 274877906944x2 + 274877906944x + 1099511627776 \( 3^{20}\cdot 11^{36}\cdot 17^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.645...096.1 x40 + 27x38 + 377x36 + 4086x34 + 37422x32 + 275385x30 + 1674040x28 + 8845635x26 + 39413938x24 + 142400001x22 + 433488557x20 + 1123030092x18 + 2244362704x16 + 3244057728x14 + 3879307776x12 + 3898278912x10 + 2380038144x8 + 491175936x6 + 71434240x4 + 11796480x2 + 1048576 \( 2^{40}\cdot 3^{20}\cdot 7^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 505]$ (GRH)
40.0.645...936.1 x40 - 7x38 + 40x36 - 217x34 + 1159x32 - 6160x30 + 32689x28 - 173383x26 + 919480x24 - 4875913x22 + 25856071x20 - 43883217x18 + 74477880x16 - 126396207x14 + 214472529x12 - 363741840x10 + 615940119x8 - 1037904273x6 + 1721868840x4 - 2711943423x2 + 3486784401 \( 2^{40}\cdot 11^{36}\cdot 13^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.284...336.1 x40 - 2x39 - 5x38 + 20x37 + 19x36 - 174x35 + 27x34 + 1320x33 - 1529x32 - 8690x31 + 20527x30 - 94754x29 + 77343x28 + 551264x27 - 1081637x26 - 3227338x25 + 11624611x24 + 13347388x23 - 103334297x22 - 110x21 + 799980567x20 - 799980544x19 + 593311510x18 - 386642440x17 + 233364508x16 - 133478048x15 + 73192024x14 - 38712800x13 + 19792752x12 - 9750400x11 + 4684384x10 - 2531584x9 + 1321408x8 - 667392x7 + 326016x6 - 153600x5 + 69376x4 - 29696x3 + 11776x2 - 4096x + 1024 \( 2^{60}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.284...336.2 x40 - 20x39 + 234x38 - 1976x37 + 13279x36 - 74520x35 + 360238x34 - 1530680x33 + 5800422x32 - 19809432x31 + 61453956x30 - 174207264x29 + 453277478x28 - 1086128128x27 + 2402433828x26 - 4913327328x25 + 9300148725x24 - 16301626740x23 + 26468749370x22 - 39824889160x21 + 55573165179x20 - 72059216200x19 + 87116562190x18 - 98665586280x17 + 105104472084x16 - 105116990208x15 + 97114298392x14 - 79416402656x13 + 55222821968x12 - 38173429376x11 + 36542373728x10 - 33447633536x9 + 14972299072x8 + 1667546112x7 - 2576594560x6 - 1340352000x5 + 1398502656x4 - 272152576x3 - 20025856x2 + 5699584x + 541696 \( 2^{60}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.405...361.1 x40 - x39 + 5x38 - 14x37 + 14x36 - 70x35 + 71x34 - 71x33 + 355x32 + 756x31 - 756x30 - 4799x29 - 10880x28 - 23436x27 + 22811x26 + 57820x25 + 422604x24 + 280521x23 + 550520x22 - 2986956x21 - 6778669x20 - 14934780x19 + 13763000x18 + 35065125x17 + 264127500x16 + 180687500x15 + 356421875x14 - 1830937500x13 - 4250000000x12 - 9373046875x11 - 7382812500x10 + 36914062500x9 + 86669921875x8 - 86669921875x7 + 433349609375x6 - 2136230468750x5 + 2136230468750x4 - 10681152343750x3 + 19073486328125x2 - 19073486328125x + 95367431640625 \( 3^{20}\cdot 11^{36}\cdot 19^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.1 x40 + 5x38 - 125x34 - 625x32 + 15625x28 + 78125x26 - 1953125x22 - 9765625x20 - 48828125x18 + 1220703125x14 + 6103515625x12 - 152587890625x8 - 762939453125x6 + 19073486328125x2 + 95367431640625 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.40.113...000.1 x40 - 57x38 + 1425x36 - 20652x34 + 193556x32 - 1241646x30 + 5639500x28 - 18536622x26 + 44732012x24 - 79942830x22 + 106185927x20 - 104672040x18 + 76047611x16 - 40198503x14 + 15148783x12 - 3949296x10 + 681395x8 - 72774x6 + 4330x4 - 120x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) trivial (GRH)
40.0.113...000.2 x40 + 63x38 + 1757x36 + 28656x34 + 304524x32 + 2227290x30 + 11569924x28 + 43529874x26 + 120157564x24 + 245357970x22 + 372028031x20 + 418309584x18 + 346146943x16 + 207509745x14 + 87735123x12 + 25054116x10 + 4509483x8 + 457722x6 + 22030x4 + 360x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.3 x40 - 2x39 + 11x38 - 28x37 + 116x36 - 338x35 + 1253x34 - 3916x33 + 13783x32 - 44616x31 + 153132x30 + 80036x29 + 541141x28 + 747642x27 + 2779859x26 + 3922868x25 + 17053272x24 + 14844762x23 + 118286465x22 - 156288x21 + 930022655x20 - 929692368x19 + 1048603985x18 - 1164717018x17 + 1302100332x16 - 1438695542x15 + 1625753279x14 - 1740855678x13 + 2050319641x12 - 1841907254x11 + 2483453292x10 + 283155444x9 + 32284483x8 + 3680974x7 + 419693x6 + 47852x5 + 5456x4 + 622x3 + 71x2 + 8x + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.4 x40 + 33x38 + 660x36 + 8481x34 + 79937x32 + 550209x30 + 2888875x28 + 11395659x26 + 34765478x24 + 81549039x22 + 150504519x20 + 218421093x18 + 252235148x16 + 229629444x14 + 164857660x12 + 90820785x10 + 37846985x8 + 11068596x6 + 2210791x4 + 219615x2 + 14641 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.5 x40 - x38 - 3x36 + 7x34 + 5x32 - 33x30 + 13x28 + 119x26 - 171x24 - 305x22 + 989x20 - 1220x18 - 2736x16 + 7616x14 + 3328x12 - 33792x10 + 20480x8 + 114688x6 - 196608x4 - 262144x2 + 1048576 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22, 1364]$ (GRH)
40.0.113...000.6 x40 - 17x38 + 165x36 - 1104x34 + 5612x32 - 22286x30 + 71340x28 - 186766x26 + 394548x24 - 673286x22 + 1073159x20 - 963792x18 - 1815737x16 - 1432471x14 + 22124595x12 - 20548220x10 - 12025645x8 + 14060626x6 - 1954634x4 + 12356760x2 + 62742241 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.7 x40 - 37x38 + 627x36 - 6459x34 + 45284x32 - 229240x30 + 867354x28 - 2503946x26 + 5579574x24 - 9643510x22 + 12917486x20 - 13370001x18 + 11066638x16 - 9636845x14 + 13197033x12 - 19221829x10 + 19241108x8 - 7579633x6 + 15501805x4 + 42588510x2 + 98029801 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22, 88]$ (GRH)
40.0.113...000.8 x40 + 43x38 + 855x36 + 10413x34 + 86696x32 + 521224x30 + 2328570x28 + 7829798x26 + 19840782x24 + 37603690x22 + 52728422x20 + 54866175x18 + 43814026x16 + 21190547x14 - 27594627x12 - 87607421x10 - 71349280x8 - 541649x6 - 85190495x4 - 99217770x2 + 392079601 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.9 x40 + 23x38 + 297x36 + 2628x34 + 17588x32 + 92906x30 + 398388x28 + 1406098x26 + 4119588x24 + 10028666x22 + 20212367x20 + 33266232x18 + 44628595x16 + 60919057x14 + 89053119x12 - 101113408x10 - 814899493x8 - 1146406702x6 + 43140130x4 + 1563447480x2 + 1568239201 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.113...000.10 x40 + 7x38 + 33x36 + 119x34 + 305x32 + 231x30 - 3263x28 - 26537x26 - 133551x24 - 510265x22 - 1435039x20 - 8164240x18 - 34189056x16 - 108695552x14 - 213843968x12 + 242221056x10 + 5117050880x8 + 31943819264x6 + 141733920768x4 + 481036337152x2 + 1099511627776 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.560...625.1 x40 + 9x38 + 77x36 + 657x34 + 5605x32 + 47817x30 + 407933x28 + 3480129x26 + 29689429x24 + 253284345x22 + 2160801389x20 + 1013137380x18 + 475030864x16 + 222728256x14 + 104430848x12 + 48964608x10 + 22958080x8 + 10764288x6 + 5046272x4 + 2359296x2 + 1048576 \( 5^{20}\cdot 11^{36}\cdot 13^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.942...625.1 x40 - 20x39 + 250x38 - 2280x37 + 16785x36 - 103882x35 + 556865x34 - 2630895x33 + 11096690x32 - 42149850x31 + 145094552x30 - 454632600x29 + 1300438080x28 - 3401715790x27 + 8143185965x26 - 17835897715x25 + 35705537360x24 - 65203926240x23 + 108312567150x22 - 163041491640x21 + 221323843494x20 - 269334320725x19 + 291790112540x18 - 279345756625x17 + 234872963600x16 - 173441812688x15 + 114506150895x14 - 71247196915x13 + 45256479670x12 - 30110973150x11 + 19249458247x10 - 10504339140x9 + 4582264570x8 - 1732881785x7 + 824549945x6 - 509520747x5 + 266470770x4 - 109881885x3 + 24713760x2 + 1527435x + 3107899 \( 3^{20}\cdot 5^{68}\cdot 7^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.138...736.1 x40 - 9x38 + 65x36 - 441x34 + 2929x32 - 19305x30 + 126881x28 - 833049x26 + 5467345x24 - 35877321x22 + 235418369x20 - 574037136x18 + 1399640320x16 - 3412168704x14 + 8315273216x12 - 20242759680x10 + 49140465664x8 - 118380036096x6 + 279172874240x4 - 618475290624x2 + 1099511627776 \( 2^{40}\cdot 11^{36}\cdot 17^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.184...961.1 x40 - x39 + 6x38 - 17x37 + 17x36 - 102x35 + 73x34 - 73x33 + 438x32 + 2431x31 - 2431x30 - 14783x29 - 27726x28 - 119119x27 + 156703x26 - 53754x25 + 2550119x24 + 529177x23 + 6902634x22 - 17622319x21 - 42843857x20 - 105733914x19 + 248494824x18 + 114302232x17 + 3304954224x16 - 417991104x15 + 7311135168x14 - 33345696384x13 - 46569033216x12 - 148978579968x11 - 146993273856x10 + 881959643136x9 + 953430663168x8 - 953430663168x7 + 5720583979008x6 - 47958868426752x5 + 47958868426752x4 - 287753210560512x3 + 609359740010496x2 - 609359740010496x + 3656158440062976 \( 3^{20}\cdot 11^{36}\cdot 23^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.203...096.1 x40 - 103x36 + 5588x32 - 164960x28 + 2662270x24 - 22941208x20 + 92377760x16 - 65359259x12 - 534900542x8 - 688869171x4 + 19356878641 \( 2^{80}\cdot 7^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.809...000.1 x40 - 2x39 + 49x38 - 66x37 + 1410x36 - 1580x35 + 25227x34 - 21838x33 + 320585x32 - 236786x31 + 2957257x30 - 1886108x29 + 20750979x28 - 11932490x27 + 111278921x26 - 56565736x25 + 464093662x24 - 208611822x23 + 1495634299x22 - 564834934x21 + 3736972197x20 - 1196870942x19 + 7163344449x18 - 1874745952x17 + 10428999440x16 - 2457927574x15 + 11277728362x14 - 2411808414x13 + 8864033300x12 - 2093662826x11 + 4837056745x10 - 1129495192x9 + 1837441747x8 - 421491998x7 + 395621642x6 - 53794892x5 + 41542653x4 - 7893186x3 + 2163669x2 - 138306x + 7921 \( 2^{60}\cdot 3^{20}\cdot 5^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) n/a
Next   Download to