Learn more about

Refine search


Results (1-50 of 1626 matches)

Next   Download to        
Label Polynomial Discriminant Galois group Class group
36.0.131...081.1 x36 - x33 + x27 - x24 + x18 - x12 + x9 - x3 + 1 \( 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[7]$ (GRH)
36.0.765...984.1 x36 - 38x30 + 1315x24 - 4900x18 + 16603x12 - 129x6 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[2, 14]$ (GRH)
36.0.424...625.1 x36 - 16x33 + 470x30 + 3624x27 + 44003x24 + 27532x21 + 50596x18 - 38116x15 + 32635x12 - 8692x9 + 2129x6 + 44x3 + 1 \( 3^{54}\cdot 5^{18}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[2, 74]$ (GRH)
36.0.590...201.1 x36 - x35 + 6x34 - 7x33 + 27x32 - 35x31 + 110x30 - 90x29 + 365x28 - 253x27 + 1190x26 - 820x25 + 3948x24 - 2955x23 + 8389x22 - 6275x21 + 16362x20 - 9115x19 + 28304x18 + 1097x17 + 33005x16 + 594x15 + 42702x14 - 8321x13 + 51190x12 - 23469x11 + 21146x10 - 11317x9 + 10292x8 - 3370x7 + 4283x6 + 1030x5 + 250x4 + 59x3 + 15x2 + 3x + 1 \( 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 182]$ (GRH)
36.0.123...304.1 x36 - 6x34 + 27x32 - 109x30 + 417x28 - 1548x26 + 5644x24 - 13098x22 + 29340x20 - 63802x18 + 131850x16 - 246222x14 + 354484x12 - 42756x10 + 5157x8 - 622x6 + 75x4 - 9x2 + 1 \( 2^{36}\cdot 3^{48}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[14, 14]$ (GRH)
36.0.152...281.1 x36 - 4x33 + 57x30 - 36x27 + 1910x24 - 2801x21 + 16733x18 + 11446x15 + 36100x12 - 11599x9 + 4932x6 + 69x3 + 1 \( 3^{54}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[182]$ (GRH)
36.0.473...721.1 x36 - x35 - 4x34 + 15x33 - 16x32 - 64x31 + 289x30 + 606x29 - 2131x28 + 1716x27 + 8000x26 - 37236x25 + 41632x24 + 157678x23 + 138311x22 - 88085x21 - 438826x20 - 452289x19 + 632324x18 + 713006x17 - 496621x16 - 2036590x15 - 2057459x14 + 1547178x13 + 6189592x12 + 1579124x11 - 31870x10 - 127114x9 - 32211x8 + 891x7 + 2434x6 - 49x5 - 196x4 - 50x3 + x2 + 4x + 1 \( 3^{18}\cdot 7^{30}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[6, 78]$ (GRH)
36.0.685...625.1 x36 + 9x34 - 4x33 + 72x32 - 69x31 + 584x30 + 981x29 + 4881x28 + 7326x27 + 34614x26 + 39264x25 + 241820x24 + 164610x23 + 347325x22 + 272002x21 + 443511x20 + 341952x19 + 513316x18 + 62091x17 + 423768x16 + 53105x15 + 415071x14 + 105954x13 + 408896x12 + 148752x11 + 103692x10 + 47916x9 + 30861x8 + 10350x7 + 8009x6 - 1710x5 + 372x4 - 77x3 + 18x2 - 3x + 1 \( 3^{48}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[18, 126]$ (GRH)
36.36.900...616.1 x36 - 36x34 + 594x32 - 5951x30 + 40425x28 - 196911x26 + 709280x24 - 1920270x22 + 3932379x20 - 6080856x18 + 7034958x16 - 5982741x14 + 3636879x12 - 1514853x10 + 405648x8 - 63358x6 + 4956x4 - 144x2 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) trivial (GRH)
36.0.900...616.1 x36 + 36x34 + 594x32 + 5953x30 + 40485x28 + 197721x26 + 715780x24 + 1954770x22 + 4059891x20 + 6417344x18 + 7674462x16 + 6854571x14 + 4475587x12 + 2066547x10 + 640764x8 + 122466x6 + 12276x4 + 432x2 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 28, 364]$ (GRH)
36.0.900...616.2 x36 + 6x34 + 27x32 + 111x30 + 441x28 + 1728x26 + 6732x24 + 12906x22 + 22032x20 + 36234x18 + 57834x16 + 86994x14 + 110160x12 + 51516x10 + 24057x8 + 11178x6 + 5103x4 + 2187x2 + 729 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 14, 182]$ (GRH)
36.0.900...616.3 x36 + 70x30 + 4067x24 + 57624x18 + 669879x12 + 285719x6 + 117649 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.194...361.1 x36 - x35 + 28x34 - 17x33 + 482x32 - 236x31 + 5049x30 - 1832x29 + 37992x28 - 12295x27 + 199953x26 - 58763x25 + 782564x24 - 233544x23 + 2165880x22 - 629685x21 + 4427149x20 - 1126928x19 + 6143602x18 - 998749x17 + 6093363x16 - 685062x15 + 4237386x14 - 223893x13 + 2109469x12 - 79641x11 + 708581x10 - 7791x9 + 162475x8 - 6767x7 + 22097x6 - 1065x5 + 2093x4 - 92x3 + 81x2 + 6x + 1 \( 3^{18}\cdot 7^{24}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 2, 2, 2, 2, 6, 114]$ (GRH)
36.0.200...696.1 x36 - 304x30 + 84160x24 - 2508800x18 + 68005888x12 - 4227072x6 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[18, 18]$ (GRH)
36.0.200...696.2 x36 + 304x30 + 84160x24 + 2508800x18 + 68005888x12 + 4227072x6 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[18, 54]$ (GRH)
36.0.840...304.1 x36 - 9x34 + 67x32 - 478x30 + 3373x28 - 23732x26 + 166844x24 - 325502x22 + 617434x20 - 1166722x18 + 2181924x16 - 3920642x14 + 5905564x12 - 443012x10 + 33233x8 - 2493x6 + 187x4 - 14x2 + 1 \( 2^{36}\cdot 7^{30}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[3, 6, 78]$ (GRH)
36.0.216...624.1 x36 - 354x30 + 122947x24 - 838624x18 + 5611807x12 - 2369x6 + 1 \( 2^{36}\cdot 3^{54}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[18, 126]$ (GRH)
36.0.499...625.1 x36 + 36x34 - 4x33 + 594x32 - 132x31 + 5951x30 - 1980x29 + 40425x28 - 17788x27 + 196911x26 - 106056x25 + 708976x24 - 438696x23 + 1912974x22 - 1274184x21 + 3855771x20 - 2551176x19 + 5624552x18 - 3268836x17 + 5371470x16 - 1959888x15 + 2297349x14 + 1184688x13 - 837713x12 + 3617676x11 - 642219x10 + 3953440x9 - 768960x8 + 5792076x7 - 5874034x6 + 12034116x5 - 7662084x4 + 4778248x3 - 2375280x2 - 19886784x + 31530241 \( 3^{54}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 2, 2, 18, 666]$ (GRH)
36.36.499...625.1 x36 - 54x34 - 4x33 + 1269x32 + 183x31 - 17119x30 - 3555x29 + 147555x28 + 38637x27 - 858159x26 - 261666x25 + 3476891x24 + 1169019x23 - 10013571x22 - 3567239x21 + 20757231x20 + 7596969x19 - 31151513x18 - 11422746x17 + 33816645x16 + 12157547x15 - 26324586x14 - 9097842x13 + 14426662x12 + 4701951x11 - 5391504x10 - 1623250x9 + 1304280x8 + 353091x7 - 187354x6 - 43479x5 + 13686x4 + 2408x3 - 360x2 - 24x + 1 \( 3^{54}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) trivial (GRH)
36.0.499...625.2 x36 - 6x34 - 4x33 + 27x32 + 36x31 - 111x30 + 36x29 + 441x28 - 344x27 - 2736x26 + 624x25 + 15500x24 + 4320x23 - 12810x22 - 54168x21 - 35424x20 + 139512x19 + 198166x18 - 136224x17 - 534822x16 - 621600x15 + 969246x14 + 2066184x13 - 646144x12 - 1673568x11 + 4509732x10 - 5790224x9 + 3550761x8 + 260760x7 - 6371706x6 + 14025420x5 - 10971873x4 + 6392588x3 - 3518667x2 - 29713188x + 47045881 \( 3^{54}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 2, 518]$ (GRH)
36.0.499...625.3 x36 - x33 - 70x30 + 1289x27 + 2848x24 - 33978x21 + 415031x18 - 2654421x15 + 8225230x12 + 50229628x9 + 90247619x6 + 275010364x3 + 594823321 \( 3^{54}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.519...849.1 x36 - x35 - x34 + 11x33 - 16x32 - 20x31 + 137x30 + 128x29 - 626x28 + 1449x27 + 1176x26 - 9499x25 + 16514x24 + 15575x23 + 31136x22 + 44304x21 + 73801x20 + 86177x19 - 41684x18 + 239337x17 + 167776x16 + 255997x15 + 333971x14 + 340761x13 + 302152x12 - 570148x11 + 571486x10 - 135047x9 - 15647x8 + 391394x7 - 133314x6 + 223909x5 - 166943x4 + 67571x3 + 76832x2 - 84035x + 117649 \( 7^{30}\cdot 19^{30} \) $C_6^2$ (as 36T4) $[3, 6, 78]$ (GRH)
36.0.134...769.1 x36 - 29x33 + 584x30 - 5973x27 + 43132x24 - 106620x21 + 146403x18 - 601883x15 + 1334658x12 - 870682x9 + 395165x6 - 324478x3 + 117649 \( 3^{54}\cdot 19^{30} \) $C_6^2$ (as 36T4) $[3, 6, 42]$ (GRH)
36.0.323...776.1 x36 + 12x34 - 2x33 + 123x32 - 54x31 + 1229x30 + 1302x29 + 12297x28 + 13560x27 + 119598x26 + 103356x25 + 1143236x24 + 643836x23 + 2712360x22 + 2565056x21 + 6752154x20 + 5079336x19 + 16216396x18 - 22048776x17 + 29964870x16 - 28196192x15 + 39407814x14 - 27478788x13 + 48532934x12 - 18279048x11 + 8930712x10 - 4002972x9 + 1801707x8 - 713472x7 + 288698x6 + 34014x5 + 4017x4 + 470x3 + 57x2 + 6x + 1 \( 2^{54}\cdot 3^{48}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 126, 126]$ (GRH)
36.0.323...776.2 x36 - 42x34 - 12x33 + 798x32 + 444x31 - 8930x30 - 7224x29 + 64293x28 + 66808x27 - 308040x26 - 380412x25 + 1018573x24 + 1390296x23 - 2660256x22 - 3730568x21 + 6607119x20 + 9624456x19 - 7505542x18 - 2964660x17 + 28706040x16 + 6977356x15 - 34628742x14 + 28138392x13 + 70034750x12 - 59344320x11 - 97239042x10 + 110557824x9 + 103706163x8 - 146720820x7 + 54606518x6 - 96816432x5 + 280912497x4 - 164862264x3 + 36478572x2 - 7070100x + 9128827 \( 2^{54}\cdot 3^{48}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.344...664.1 x36 + 55x34 + 1311x32 + 17888x30 + 155517x28 + 907822x26 + 3655689x24 + 10287051x22 + 20316834x20 + 28134360x18 + 27188388x16 + 18181863x14 + 8297859x12 + 2527930x10 + 496906x8 + 59787x6 + 4025x4 + 126x2 + 1 \( 2^{36}\cdot 7^{24}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[3, 6, 6, 36, 36]$ (GRH)
36.0.427...881.1 x36 - x35 - 6x34 + 5x33 + 2x32 + 12x31 + 185x30 - 492x29 - 901x28 + 2020x27 - 334x26 + 6200x25 + 30320x24 - 95958x23 + 97379x22 - 19785x21 - 1441998x20 + 3350415x19 + 5259110x18 - 15713252x17 + 10161475x16 + 36567144x15 - 278192711x14 + 231547784x13 + 1388580810x12 - 2013093404x11 + 369199712x10 + 2549556730x9 - 3562649419x8 - 341064451x7 + 5517032206x6 - 1124136195x5 - 6744817170x4 + 9846280108x3 - 1977326743x2 - 11863960458x + 13841287201 \( 3^{18}\cdot 7^{30}\cdot 19^{24} \) $C_6^2$ (as 36T4) n/a
36.0.466...625.1 x36 - x35 + 13x34 - 12x33 + 136x32 - 102x31 + 1346x30 - 2451x29 + 14878x28 - 26274x27 + 149073x26 - 238348x25 + 1434220x24 - 2018276x23 + 4847897x22 - 7515837x21 + 15331678x20 - 19685757x19 + 41203829x18 + 6109454x17 + 40517626x16 + 12539976x15 + 43737647x14 + 6924502x13 + 56036661x12 - 17241760x11 + 25873295x10 - 10539950x9 + 15076150x8 - 3353375x7 + 8256125x6 + 2810625x5 + 988125x4 + 321875x3 + 121875x2 + 31250x + 15625 \( 5^{18}\cdot 7^{30}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[3, 78, 78]$ (GRH)
36.0.619...889.1 x36 - 2x33 + 9x30 - 3470x27 - 11512x24 + 72093x21 + 3859957x18 + 25621008x15 + 191238344x12 - 934302955x9 - 4945223862x6 + 7417705475x3 + 128100283921 \( 3^{54}\cdot 7^{24}\cdot 11^{18} \) $C_6^2$ (as 36T4) n/a
36.0.721...656.1 x36 + 234x32 + 16497x28 + 423088x24 + 3439800x20 + 2847312x16 + 761144x12 + 73593x8 + 1794x4 + 1 \( 2^{72}\cdot 3^{48}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[2, 2, 18, 126]$ (GRH)
36.0.120...625.1 x36 - 2x33 + 997x30 + 13298x27 + 969798x24 + 5639039x21 + 36900263x18 - 22224984x15 + 40530596x12 + 12785625x9 + 8883000x6 - 359375x3 + 15625 \( 3^{54}\cdot 5^{18}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[7, 14, 98]$ (GRH)
36.0.125...201.1 x36 - 16x33 + 1611x30 + 17456x27 + 1824236x24 - 1408917x21 + 66130813x18 + 80687298x15 + 2089768094x12 - 262040945x9 + 33096582x6 + 5749x3 + 1 \( 3^{54}\cdot 7^{24}\cdot 13^{18} \) $C_6^2$ (as 36T4) n/a
36.36.191...625.1 x36 - 77x34 - 20x33 + 2554x32 + 1176x31 - 48322x30 - 29576x29 + 583031x28 + 423372x27 - 4751125x26 - 3862424x25 + 26998873x24 + 23777282x23 - 108821254x22 - 101854202x21 + 313099092x20 + 308270172x19 - 641419103x18 - 662076108x17 + 924513319x16 + 1004033756x15 - 914832149x14 - 1059071764x13 + 593149297x12 + 754912148x11 - 228251095x10 - 344940108x9 + 38527228x8 + 91102932x7 + 2585738x6 - 10815600x5 - 1337240x4 + 129082x3 + 1167x2 - 118x + 1 \( 5^{18}\cdot 7^{24}\cdot 13^{30} \) $C_6^2$ (as 36T4) trivial (GRH)
36.0.276...944.1 x36 - 40x34 + 994x32 - 15244x30 + 169571x28 - 1343558x26 + 8063896x24 - 36148410x22 + 124149567x20 - 315209926x18 + 597601939x16 - 785267530x14 + 764272865x12 - 519473400x10 + 257155248x8 - 79576832x6 + 15590144x4 - 263168x2 + 4096 \( 2^{36}\cdot 3^{18}\cdot 7^{24}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[3, 6, 6, 6, 6]$ (GRH)
36.0.400...000.1 x36 + 81x34 + 2814x32 + 56015x30 + 716880x28 + 6252714x26 + 38356241x24 + 168143160x22 + 529714350x20 + 1196774341x18 + 1922710668x16 + 2166050013x14 + 1679154720x12 + 874409358x10 + 295502889x8 + 61327725x6 + 7101906x4 + 378984x2 + 5041 \( 2^{36}\cdot 3^{48}\cdot 5^{18}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[3, 6, 6, 12, 252]$ (GRH)
36.0.758...144.1 x36 - 13x34 + 119x32 - 946x30 + 6985x28 - 49336x26 + 338472x24 - 1782270x22 + 8663374x20 - 40095490x18 + 175403900x16 - 699981526x14 + 2294243848x12 - 3420884824x10 + 5086203969x8 - 7494358949x6 + 10739824263x4 - 14123762450x2 + 13841287201 \( 2^{36}\cdot 7^{30}\cdot 19^{24} \) $C_6^2$ (as 36T4) n/a
36.0.999...609.1 x36 - 18x35 + 213x34 - 1834x33 + 12864x32 - 75852x31 + 388741x30 - 1758153x29 + 7119996x28 - 26031435x27 + 86537859x26 - 262681356x25 + 730353369x24 - 1862961681x23 + 4363272450x22 - 9385700703x21 + 18553048287x20 - 33761779752x19 + 56822053891x18 - 89255367057x17 + 132728096550x16 - 189990042153x15 + 264621008625x14 - 357245583000x13 + 457679683451x12 - 539735803575x11 + 567877593576x10 - 518843066985x9 + 404506262502x8 - 268465079178x7 + 159238717534x6 - 93315446433x5 + 57261249099x4 - 31748050043x3 + 11317240791x2 - 1825389327x + 225433657 \( 3^{48}\cdot 7^{30}\cdot 11^{18} \) $C_6^2$ (as 36T4) n/a
36.0.143...104.1 x36 + 66x34 + 1899x32 + 31364x30 + 329559x28 + 2308518x26 + 10994901x24 + 35728458x22 + 78637230x20 + 115641708x18 + 111976572x16 + 70684362x14 + 28999138x12 + 7688325x10 + 1293075x8 + 132111x6 + 7476x4 + 189x2 + 1 \( 2^{36}\cdot 3^{48}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[936, 936]$ (GRH)
36.0.171...689.1 x36 - 3x35 + 14x34 + 25x33 - 81x32 + 430x31 + 649x30 - 2959x29 + 10672x28 - 9183x27 + 3994x26 - 36672x25 + 129037x24 - 153463x23 - 377431x22 + 1507640x21 - 2832566x20 + 5098422x19 + 5245819x18 - 14119627x17 + 55722175x16 - 52547145x15 + 205342047x14 - 466686704x13 + 1314989350x12 - 1838473868x11 + 1895355654x10 - 622211603x9 - 531048524x8 + 1533170167x7 - 241708081x6 - 506053254x5 + 309479289x4 + 94941336x3 - 65292451x2 - 8212694x + 10504081 \( 3^{18}\cdot 7^{24}\cdot 19^{30} \) $C_6^2$ (as 36T4) $[3, 3, 3, 6, 18]$ (GRH)
36.0.195...664.1 x36 - 394x30 + 118583x24 - 14205984x18 + 1297088703x12 - 4312188797x6 + 13841287201 \( 2^{36}\cdot 3^{54}\cdot 19^{24} \) $C_6^2$ (as 36T4) $[3, 12, 444]$ (GRH)
36.36.228...289.1 x36 - 71x34 - 8x33 + 2203x32 + 458x31 - 39419x30 - 11171x29 + 452485x28 + 152549x27 - 3511489x26 - 1291483x25 + 18942377x24 + 7104729x23 - 72013209x22 - 25930789x21 + 193701628x20 + 63027785x19 - 366929496x18 - 100868241x17 + 482872954x16 + 103172083x15 - 430753452x14 - 63559658x13 + 250492399x12 + 20933394x11 - 89499925x10 - 2758730x9 + 18093496x8 - 12482x7 - 1913861x6 + 35416x5 + 94085x4 - 2330x3 - 1563x2 + 15x + 1 \( 3^{18}\cdot 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) trivial (GRH)
36.0.228...289.1 x36 - x35 + 7x34 - 8x33 - 136x32 + 153x31 - 512x30 + 719x29 + 7461x28 - 8086x27 + 3633x26 - 3743x25 - 168178x24 + 140481x23 + 252423x22 - 369904x21 + 1818264x20 - 1412692x19 - 1009209x18 + 5237959x17 - 4210387x16 - 1359727x15 - 147345x14 - 14700644x13 + 6552114x12 + 3277502x11 + 7696193x10 + 14084075x9 - 21104578x8 - 11152434x7 + 6981477x6 + 3677284x5 + 59716590x4 - 2809858x3 + 39287825x2 - 9679685x + 10834279 \( 3^{18}\cdot 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 2, 4, 4, 532]$ (GRH)
36.0.228...289.2 x36 - x35 - 11x34 + 22x33 + 131x32 - 288x31 - 47x30 + 1964x29 - 423x28 - 8707x27 + 29133x26 + 11554x25 - 33121x24 + 41016x23 + 218454x22 + 112199x21 + 1603263x20 + 614630x19 - 3553956x18 - 7374521x17 + 2568686x16 + 15676868x15 + 9985635x14 - 30121865x13 - 45496518x12 - 4484353x11 + 89890193x10 + 64137758x9 - 31771765x8 - 106491054x7 - 11566116x6 + 61314085x5 + 49718214x4 - 7847932x3 - 85948561x2 + 39832279x + 92525161 \( 3^{18}\cdot 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 2, 2, 2, 6, 42]$ (GRH)
36.0.228...289.3 x36 - x35 - 7x34 + 6x33 + 53x32 - 22x31 - 449x30 + 1041x29 + 2666x28 - 6441x27 - 23107x26 + 40455x25 + 208009x24 - 284405x23 + 415523x22 - 325139x21 - 705229x20 + 2341779x19 - 4311109x18 + 5140127x17 - 1135357x16 - 11693491x15 + 41430373x14 - 70160559x13 + 9950131x12 + 108765185x11 + 105945575x10 + 61986125x9 - 21712500x8 - 226762500x7 + 45812500x6 - 67890625x5 - 156250000x4 - 119140625x3 - 19531250x2 + 97656250x + 244140625 \( 3^{18}\cdot 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) n/a
36.36.236...704.1 x36 - 72x34 + 2376x32 - 47624x30 + 647760x28 - 6327072x26 + 45809920x24 - 250210560x22 + 1039332096x20 - 3285680128x18 + 7858649088x16 - 14038161408x14 + 18332004352x12 - 16929153024x10 + 10498277376x8 - 4012965888x6 + 804519936x4 - 56623104x2 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) trivial (GRH)
36.0.236...704.1 x36 + 72x34 + 2376x32 + 47608x30 + 646800x28 + 6301152x26 + 45393920x24 + 245794560x22 + 1006689024x20 + 3113398272x18 + 7203796992x16 + 12252653568x14 + 14896656384x12 + 12409675776x10 + 6646136832x8 + 2076114944x6 + 324796416x4 + 18874368x2 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.36.236...704.2 x36 - 72x34 + 2376x32 - 47608x30 + 646800x28 - 6301152x26 + 45393920x24 - 245794560x22 + 1006689024x20 - 3113398272x18 + 7203796992x16 - 12252653568x14 + 14896656384x12 - 12409675776x10 + 6646136832x8 - 2076114944x6 + 324796416x4 - 18874368x2 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.236...704.2 x36 + 72x34 + 2376x32 + 47624x30 + 647760x28 + 6327072x26 + 45809920x24 + 250210560x22 + 1039332096x20 + 3285680128x18 + 7858649088x16 + 14038161408x14 + 18332004352x12 + 16929153024x10 + 10498277376x8 + 4012965888x6 + 804519936x4 + 56623104x2 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.236...704.3 x36 - 12x34 + 108x32 - 888x30 + 7056x28 - 55296x26 + 430848x24 - 1651968x22 + 5640192x20 - 18551808x18 + 59222016x16 - 178163712x14 + 451215360x12 - 422019072x10 + 394149888x8 - 366280704x6 + 334430208x4 - 286654464x2 + 191102976 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.236...704.4 x36 + 12x34 + 108x32 + 888x30 + 7056x28 + 55296x26 + 430848x24 + 1651968x22 + 5640192x20 + 18551808x18 + 59222016x16 + 178163712x14 + 451215360x12 + 422019072x10 + 394149888x8 + 366280704x6 + 334430208x4 + 286654464x2 + 191102976 \( 2^{54}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
Next   Download to