Learn more about

Refine search


Results (1-50 of 75 matches)

Next   Download to        
Label Polynomial Discriminant Galois group Class group
16.8.732...008.1 x16 - 4x15 - x14 + 21x13 - 33x12 + 30x11 - x10 - 30x9 - 33x8 - 21x7 + 220x6 - 47x5 - 135x4 - 38x3 - x2 + 4x + 1 \( 2^{8}\cdot 17^{15} \) $C_{16} : C_2$ (as 16T22) trivial
16.16.817...873.1 x16 - 3x15 - 25x14 + 92x13 + 98x12 - 583x11 + 49x10 + 1383x9 - 647x8 - 1357x7 + 807x6 + 520x5 - 251x4 - 114x3 + 19x2 + 11x + 1 \( 13^{4}\cdot 17^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.373...553.1 x16 - x15 + 18x14 - 35x13 + 52x12 - 239x11 + 154x10 + 356x9 + 171x8 - 511x7 - 2056x6 + 3518x5 - 33x4 - 2432x3 + 851x2 + 186x - 67 \( 17^{15}\cdot 19^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.978...193.1 x16 - x15 - 16x14 + 33x13 - 16x12 - 171x11 + 698x10 - 1208x9 + 1089x8 + 1529x7 - 8176x6 + 18614x5 - 29307x4 + 31602x3 - 22983x2 + 8312x - 1087 \( 17^{15}\cdot 43^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.139...033.1 x16 - 3x15 - 8x14 + 126x13 - 514x12 + 811x11 + 1001x10 - 9174x9 + 20365x8 - 13699x7 - 20001x6 + 53713x5 - 48412x4 + 11089x3 + 17631x2 - 12722x + 409 \( 17^{15}\cdot 47^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.225...433.1 x16 - x15 + 35x14 - 52x13 + 426x12 - 834x11 + 2908x10 - 5441x9 + 12734x8 - 20894x7 + 36823x6 - 49114x5 + 65638x4 - 66318x3 + 63428x2 - 39339x + 19211 \( 17^{15}\cdot 53^{4} \) $C_{16} : C_2$ (as 16T22) $[9, 18]$ (GRH)
16.8.346...273.1 x16 - x15 + x14 - 18x13 - 84x12 + 118x11 + 324x10 + 985x9 - 526x8 - 6172x7 - 1699x6 + 10250x5 + 14400x4 - 15760x3 - 20314x2 + 18495x + 8263 \( 17^{15}\cdot 59^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.576...953.2 x16 - x15 + x14 + 16x13 - 118x12 + 152x11 - 254x10 - 1055x9 + 4234x8 - 9028x7 + 11255x6 + 8856x5 - 53600x4 + 108034x3 - 108306x2 + 39813x - 4079 \( 17^{15}\cdot 67^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.135...553.1 x16 - 3x15 + 9x14 - 146x13 + 132x12 + 301x11 + 933x10 + 10461x9 - 8365x8 - 30971x7 - 18709x6 + 7320x5 + 37149x4 + 36402x3 + 55167x2 + 22519x - 6323 \( 17^{15}\cdot 83^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.16.179...113.1 x16 - 3x15 - 59x14 + 177x13 + 1203x12 - 3371x11 - 11052x10 + 25557x9 + 53804x8 - 84215x7 - 137046x6 + 109014x5 + 148448x4 - 32074x3 - 32876x2 - 4698x - 67 \( 17^{15}\cdot 89^{4} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.536...753.1 x16 - 3x15 + 60x14 - 197x13 + 1713x12 - 4867x11 + 24121x10 - 51334x9 + 156212x8 - 228630x7 + 409997x6 - 399031x5 + 583274x4 - 446279x3 + 613192x2 - 266447x + 270301 \( 3^{8}\cdot 13^{4}\cdot 17^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 22, 22]$ (GRH)
16.0.535...928.1 x16 + 85x14 + 2720x12 + 41531x10 + 311899x8 + 1087983x6 + 1861704x4 + 1531309x2 + 485537 \( 2^{16}\cdot 13^{4}\cdot 17^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 2, 6, 102]$ (GRH)
16.16.321...808.1 x16 - 48x14 + 936x12 - 9504x10 + 53604x8 - 166752x6 + 270864x4 - 202176x2 + 46818 \( 2^{79}\cdot 3^{12} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.826...041.1 x16 - 6x15 - 19x14 + 105x13 - 37x12 + 1620x11 - 3133x10 - 16161x9 + 16123x8 + 55743x7 + 14233x6 - 83412x5 - 113170x4 + 4836x3 + 39049x2 - 12594x - 5129 \( 3^{12}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.512...033.1 x16 - 7x15 + 26x14 - 239x13 + 696x12 + 3867x11 - 18073x10 - 9814x9 + 96124x8 + 66818x7 - 269519x6 - 788087x5 + 1399987x4 + 1685500x3 - 3041668x2 - 1014722x + 2074829 \( 3^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.0.666...433.3 x16 - 3x15 + 26x14 - 129x13 + 302x12 - 1025x11 + 4282x10 + 16326x9 + 95981x8 + 338337x7 + 1003331x6 + 2604733x5 + 6573615x4 + 13657839x3 + 25464387x2 + 29036657x + 45417983 \( 13^{12}\cdot 17^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 2, 2, 388]$ (GRH)
16.8.927...113.1 x16 - x15 - 45x14 + x13 - 708x12 + 1115x11 + 16242x10 + 36896x9 + 185901x8 - 544814x7 - 1337386x6 - 7688656x5 - 9683921x4 + 17611964x3 + 39000939x2 + 15688356x - 1027001 \( 11^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.215...801.1 x16 - 2x15 - 75x14 - 28x13 + 2087x12 + 12539x11 - 23154x10 - 528593x9 - 51363x8 + 8895081x7 + 3374410x6 - 64805612x5 - 20086013x4 + 187459777x3 - 9786670x2 - 246301289x + 10314571 \( 7^{12}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.925...409.1 x16 - 6x15 - 61x14 + 129x13 + 1709x12 + 11091x11 - 31783x10 - 454524x9 + 25606x8 + 6052602x7 + 10610353x6 - 30220476x5 - 125101939x4 - 49470471x3 + 344285185x2 + 698844519x + 585525649 \( 3^{12}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.584...953.1 x16 - 3x15 - 17x14 + 124x13 - 1476x12 + 412x11 + 47837x10 - 80542x9 - 257892x8 + 1864157x7 - 3412593x6 - 16023466x5 + 39257376x4 + 37514732x3 - 115827035x2 + 48133287x + 23651317 \( 31^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.216...993.2 x16 - 3x15 - 17x14 + 27x13 - 2446x12 - 10161x11 + 7582x10 + 42551x9 + 291322x8 + 12968232x7 + 37578055x6 - 154331401x5 - 321602800x4 - 85014601x3 + 505836265x2 + 5247291674x - 5285070607 \( 43^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 2]$ (GRH)
16.8.309...833.1 x16 - 3x15 - 114x14 + 900x13 - 2931x12 - 21510x11 + 319146x10 - 2247134x9 + 8400619x8 - 16164554x7 + 84204306x6 - 557059493x5 + 1493038571x4 - 895327284x3 - 2914304292x2 + 5483733054x - 2806619339 \( 47^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 2]$ (GRH)
16.8.488...321.1 x16 - 2x15 - 116x14 + 177x13 + 7745x12 - 10421x11 - 424462x10 - 657538x9 + 8943832x8 + 23224335x7 - 106230562x6 - 311941107x5 + 640011076x4 + 1607965375x3 - 1656703698x2 - 2425324435x + 1779444071 \( 11^{12}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.499...233.1 x16 - 3x15 + 80x14 - 458x13 + 1725x12 - 15981x11 + 16603x10 - 96450x9 + 409565x8 + 2849968x7 + 5772337x6 + 44508608x5 - 27303927x4 + 143015618x3 + 481082447x2 - 1618135041x + 1134515881 \( 53^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[176578]$ (GRH)
16.0.876...713.5 x16 - 3x15 + 177x14 - 652x13 + 12492x12 - 48379x11 + 504319x10 - 2195433x9 + 13672084x8 - 78136205x7 + 244603409x6 - 998379714x5 + 4521909355x4 - 12093973889x3 + 20305914608x2 - 24281793064x + 15386186173 \( 61^{4}\cdot 97^{15} \) $C_{16} : C_2$ (as 16T22) $[2, 2, 4, 15844]$ (GRH)
16.0.543...625.1 x16 - 5x15 - 59x14 - 355x13 + 2757x12 + 38575x11 + 76998x10 - 1276065x9 + 40270x8 + 15027260x7 + 51825752x6 - 512018190x5 + 1751927332x4 - 4935660000x3 + 10347212754x2 - 11733017535x + 5267375811 \( 5^{14}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) $[99, 396]$ (GRH)
16.16.543...625.1 x16 - 3x15 - 249x14 + 1468x13 + 14951x12 - 127824x11 - 146116x10 + 3524299x9 - 6618428x8 - 25092711x7 + 111980624x6 - 122939949x5 - 71984014x4 + 233617078x3 - 109771874x2 - 52840783x + 40491571 \( 5^{14}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.123...257.1 x16 - 4x15 - 29x14 + 630x13 - 4609x12 - 33136x11 + 168901x10 + 1035038x9 - 2476072x8 - 17969440x7 + 16115584x6 + 185656320x5 + 24797184x4 - 1016004608x3 - 749731840x2 + 2181038080x + 2147483648 \( 7^{12}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.16.140...313.2 x16 - 5x15 - 332x14 + 1473x13 + 38365x12 - 128109x11 - 2026194x10 + 3852972x9 + 53239647x8 - 18701219x7 - 668393921x6 - 732038184x5 + 2730181967x4 + 7553452254x3 + 7277621373x2 + 2991300154x + 410069071 \( 17^{15}\cdot 53^{12} \) $C_{16} : C_2$ (as 16T22) $[2, 2]$ (GRH)
16.8.241...649.1 x16 - 3x15 - 260x14 - 440x13 + 9958x12 + 134350x11 + 903564x10 - 1823804x9 - 25340911x8 - 85828035x7 + 138216368x6 + 575302060x5 + 324609488x4 - 971480768x3 - 1401515264x2 - 937304064x - 102055936 \( 7^{12}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.344...761.1 x16 - 6x15 - 183x14 + 679x13 + 9311x12 + 43276x11 + 97932x10 - 10403552x9 - 8440783x8 + 567915747x7 - 854442249x6 - 9305286587x5 + 21874828800x4 + 74315288244x3 - 109960290119x2 - 166367096959x + 190692533519 \( 19^{12}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.612...689.1 x16 - 7x15 + 55x14 + 419x13 - 877x12 + 13350x11 + 109599x10 + 897435x9 + 5128604x8 + 9987966x7 + 61086386x6 + 217020565x5 + 407235395x4 + 860961746x3 + 4064864216x2 + 670732880x + 11844163600 \( 13^{14}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) $[45284]$ (GRH)
16.16.612...689.1 x16 - x15 - 234x14 + 509x13 + 18337x12 - 57176x11 - 592421x10 + 2200433x9 + 8770762x8 - 37263645x7 - 58997921x6 + 293141240x5 + 166860260x4 - 1019696592x3 - 220707968x2 + 1184846848x + 504881152 \( 13^{14}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.279...897.1 x16 - 4x15 - 29x14 - 684x13 - 14245x12 - 8754x11 + 214599x10 + 581416x9 + 11811196x8 + 46895440x7 + 110537580x6 + 509315106x5 + 677109343x4 + 1464634672x3 + 1252749264x2 - 229349504x - 18436864 \( 11^{12}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.16.706...153.1 x16 - 3x15 - 569x14 + 3985x13 + 110105x12 - 1255302x11 - 6017305x10 + 141442454x9 - 386991894x8 - 4380441354x7 + 34047900007x6 - 66542719513x5 - 128137329112x4 + 622983352474x3 - 407875925600x2 - 585981669666x + 146245588969 \( 17^{15}\cdot 89^{12} \) $C_{16} : C_2$ (as 16T22) $[4]$ (GRH)
16.0.350...673.1 x16 - 7x15 + 80x14 - 285x13 - 278x12 - 2577x11 + 390922x10 - 1082129x9 + 9064381x8 - 99454552x7 - 680012525x6 - 6407302484x5 - 14729219316x4 + 64445226783x3 + 1579747491060x2 + 7868587088456x + 16658388554993 \( 13^{14}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) $[15, 74460]$ (GRH)
16.16.350...673.1 x16 - x15 - 417x14 + 1025x13 + 63344x12 - 209215x11 - 4564647x10 + 17645096x9 + 164307949x8 - 710547742x7 - 2725760041x6 + 13536478427x5 + 12517302234x4 - 98492861490x3 + 80748956016x2 + 23338091769x - 4383666169 \( 13^{14}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.180...841.1 x16 - 4x15 - 13x14 + 1990x13 - 113388x12 + 322364x11 - 13147586x10 - 14823368x9 + 54599923x8 + 2235476042x7 + 45257850300x6 + 24021442783x5 - 126249012240x4 - 3783570586772x3 - 15536602319783x2 + 55367792792525x - 36300633217867 \( 41^{15}\cdot 47^{12} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.385...689.1 x16 - 2x15 - 432x14 + 3189x13 + 45677x12 - 683348x11 + 4486191x10 - 28234100x9 - 528567471x8 + 16652185199x7 - 118567987102x6 - 764164602577x5 + 14583743055018x4 - 43451566069395x3 - 200403824876743x2 + 689590561853787x + 1412711161908947 \( 19^{12}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.462...081.1 x16 - 7x15 + 96x14 + 91x13 + 2772x12 + 129667x11 - 310036x10 + 576733x9 - 5430577x8 - 152310452x7 + 3090172208x6 + 409621632x5 - 96715161760x4 + 166203665088x3 - 59137532864x2 + 3645586489344x + 106045326871552 \( 29^{14}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) $[13506148]$ (GRH)
16.16.462...081.1 x16 - x15 - 521x14 - 352x13 + 97262x12 + 111457x11 - 8578319x10 - 7737475x9 + 391096418x8 + 106474606x7 - 9220425289x6 + 3780858515x5 + 102878217925x4 - 87419452512x3 - 457661368284x2 + 433370758320x + 437343265328 \( 29^{14}\cdot 41^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.0.685...361.1 x16 - x15 + 70x14 - 2149x13 + 14931x12 - 286964x11 + 3931708x10 - 35756396x9 + 326985485x8 - 2509676741x7 + 16373741504x6 - 80620586906x5 + 305886025651x4 - 925536442193x3 + 2156195358075x2 - 3016380401225x + 4337589140875 \( 13^{14}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) $[2856068]$ (GRH)
16.16.685...361.1 x16 - 7x15 - 486x14 + 3640x13 + 85482x12 - 680369x11 - 6731288x10 + 57906718x9 + 234236862x8 - 2308745163x7 - 3167386332x6 + 41364170537x5 + 15994510202x4 - 316660788899x3 - 107062029196x2 + 853361887750x + 670030778699 \( 13^{14}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) $[2]$ (GRH)
16.8.381...529.1 x16 - 2x15 - 521x14 + 786x13 + 55734x12 - 567292x11 + 1341198x10 + 149101604x9 - 132927939x8 - 14337715994x7 - 50939514293x6 + 995895836266x5 + 14997315506204x4 + 4919298712952x3 - 796637993795424x2 - 1453431519915008x + 10858129511809024 \( 23^{12}\cdot 89^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.0.560...913.1 x16 - 3x15 + 94x14 + 2302x13 + 26159x12 - 397975x11 + 6284898x10 - 24995672x9 + 142093700x8 - 83458080x7 + 7911836541x6 - 60914865824x5 + 494959575758x4 - 1703233593999x3 + 5636562271845x2 - 6761439893945x + 19724305333097 \( 17^{15}\cdot 89^{14} \) $C_{16} : C_2$ (as 16T22) $[2, 2, 3413896]$ (GRH)
16.0.560...913.2 x16 - 3x15 + 94x14 - 724x13 + 26159x12 - 167999x11 + 2096914x10 - 10821888x9 - 25156346x8 - 651196200x7 + 18347527091x6 + 172806626196x5 + 741026109860x4 + 1097105545547x3 - 4848874441183x2 - 7650125420549x + 20600166208723 \( 17^{15}\cdot 89^{14} \) $C_{16} : C_2$ (as 16T22) $[2, 6, 1876632]$ (GRH)
16.8.701...177.1 x16 - 4x15 - 29x14 + 2382x13 - 82573x12 - 427336x11 + 11394403x10 + 27090344x9 - 189686251x8 - 287852338x7 - 2171051651x6 - 22553825868x5 - 971088042492x4 - 3371533703552x3 - 5254806287296x2 + 16552670883328x - 7727214997504 \( 31^{12}\cdot 73^{15} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.127...161.1 x16 - 4x15 - 13x14 + 2810x13 - 239955x12 + 355328x11 - 6965852x10 - 19367521x9 + 2779261606x8 - 8362892553x7 + 110015690005x6 - 48335042911x5 - 8411107448026x4 - 16949340098240x3 + 78581612687548x2 + 641225903327167x + 1381515900331841 \( 41^{15}\cdot 67^{12} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.255...841.1 x16 - 4x15 - 13x14 + 2974x13 - 264473x12 + 795750x11 - 49905603x10 - 35476954x9 - 111581072x8 + 12241189350x7 + 316573419487x6 + 371149914965x5 + 332497946616x4 - 33962432992424x3 - 230531059041744x2 + 709344561065266x - 463451459871559 \( 41^{15}\cdot 71^{12} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
16.8.918...041.1 x16 - 4x15 - 13x14 + 3302x13 - 404406x12 + 658728x11 - 23802748x10 + 148149418x9 + 3248725095x8 - 13221233432x7 + 23779425890x6 + 491265567999x5 - 4182022415068x4 - 12864900236774x3 + 35128190290939x2 + 189418201227147x + 234513710016293 \( 41^{15}\cdot 79^{12} \) $C_{16} : C_2$ (as 16T22) trivial (GRH)
Next   Download to