Learn more about

Further refine search

Results (displaying matches 1-50 of 62) Next

Label Polynomial Discriminant Galois group Class group
45.1.246012870627780535441003976786240313709044401656133556774425683161984460829.1 x45 - x - 1 \( 29\cdot 41\cdot 1451\cdot 23184662326519\cdot 476883331418375569\cdot 12897206214339827420730516506448469501 \) $S_{45}$ (as 45T10923) n/a
45.1.4219671405487469795007840774828326879559861579577302862304338876222359629344736024723456.1 x45 - 4x - 4 \( 2^{44}\cdot 61\cdot 6357179\cdot 171802225249\cdot 418161846581\cdot 8092657633001\cdot 14050885843711\cdot 75717538318411921 \) $S_{45}$ (as 45T10923) n/a
45.1.4291826594765663003976769757283345274790293039788651431152169438111179814672368012361728.1 x45 - 2x - 2 \( 2^{44}\cdot 79\cdot 1013\cdot 3048497342199756649472787573907155555919354990435889752547649745658279 \) $S_{45}$ (as 45T10923) n/a
45.1.4363981784043854162171875179128310024815115327623964513820163479392452705083033810632704.1 x45 - x - 2 \( 2^{44}\cdot 248063644451341028921653740958863069455169086701514772461232694206072023069 \) $S_{45}$ (as 45T10923) n/a
45.1.4363981784043856212945698739738363670020724500000000000000000000000000000000000000000000.1 x45 - 2 \( 2^{44}\cdot 3^{90}\cdot 5^{45} \) 45T144 n/a
45.1.4508292162600242630883556704648400460481587420422697137695661123777640370655263975276544.1 x45 + 4x - 4 \( 2^{44}\cdot 523\cdot 326083\cdot 86999456098802843\cdot 17272128465413103990048781624806825473342473446407 \) $S_{45}$ (as 45T10923) n/a
45.45.9775350573779289822992954615907439666894942099243693331564576241100496506992103462547089.1 x45 - x44 - 72x43 + 67x42 + 2321x41 - 2007x40 - 44393x39 + 35655x38 + 562984x37 - 420187x36 - 5012298x35 + 3480849x34 + 32367724x33 - 20955723x32 - 154542085x31 + 93497512x30 + 551503498x29 - 312562651x28 - 1478859633x27 + 786888918x26 + 2984367290x25 - 1493106677x24 - 4527360022x23 + 2130398676x22 + 5146818792x21 - 2274599139x20 - 4361796744x19 + 1804001386x18 + 2733500368x17 - 1051995625x16 - 1251105602x15 + 444673277x14 + 410259354x13 - 133494819x12 - 93584992x11 + 27616610x10 + 14189768x9 - 3755862x8 - 1331682x7 + 310282x6 + 69020x5 - 13468x4 - 1660x3 + 232x2 + 16x - 1 \( 7^{30}\cdot 31^{42} \) $C_3\times C_{15}$ (as 45T2) Trivial (GRH)
45.45.43679806300610465846484971330073185012597520004657724600953543350870941304329239684756561.1 x45 - x44 - 76x43 + 71x42 + 2587x41 - 2253x40 - 52277x39 + 42329x38 + 700945x37 - 526048x36 - 6604336x35 + 4578520x34 + 45186997x33 - 28840788x32 - 228874394x31 + 134081171x30 + 867295136x29 - 465239246x28 - 2469432362x27 + 1211308198x26 + 5279515898x25 - 2368332022x24 - 8432662207x23 + 3466272920x22 + 9971146414x21 - 3771201953x20 - 8615444602x19 + 3016692905x18 + 5349176614x17 - 1747589185x16 - 2338480852x15 + 719039461x14 + 702585559x13 - 204971923x12 - 140848481x11 + 39126498x10 + 18138585x9 - 4764404x8 - 1426972x7 + 345013x6 + 64118x5 - 13350x4 - 1490x3 + 225x2 + 15x - 1 \( 11^{36}\cdot 19^{40} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.45.940750991812442660132286068374700929301371405411689329186316523736000865610069804102171689.1 x45 - 81x43 + 2943x41 - 63576x39 + 912699x37 - 256x36 - 9221688x35 + 11619x34 + 67767147x33 - 228393x32 - 369266337x31 + 2577030x30 + 1508018391x29 - 18638901x28 - 4636251652x27 + 91308222x26 + 10725370218x25 - 311639850x24 - 18578308230x23 + 749536389x22 + 23873708220x21 - 1268865972x20 - 22446274041x19 + 1494154410x18 + 15154469253x17 - 1197712170x16 - 7173383040x15 + 633986568x14 + 2312491545x13 - 213869688x12 - 490418469x11 + 44511588x10 + 65361426x9 - 5507676x8 - 5123475x7 + 385695x6 + 214380x5 - 14391x4 - 4176x3 + 243x2 + 27x - 1 \( 3^{110}\cdot 11^{36} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.45.18385118110130638532679220392530019242562666485797771487713623864599015675873914118339381361.1 x45 - 87x43 - 4x42 + 3402x41 + 300x40 - 79106x39 - 10008x38 + 1219668x37 + 196264x36 - 13165542x35 - 2519472x34 + 102436164x33 + 22316760x32 - 583045167x31 - 140145264x30 + 2440735434x29 + 631757436x28 - 7504722910x27 - 2050106328x26 + 16845457116x25 + 4771066968x24 - 27354225744x23 - 7899876240x22 + 31819110888x21 + 9218870784x20 - 26289431304x19 - 7517163552x18 + 15324352272x17 + 4245866400x16 - 6258116631x15 - 1643669037x14 + 1770836592x13 + 429144192x12 - 340508538x11 - 73586928x10 + 43022076x9 + 7934841x8 - 3375522x7 - 502012x6 + 149688x5 + 16758x4 - 3200x3 - 252x2 + 24x + 1 \( 3^{60}\cdot 31^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.29536099970750111921739666309496858571020526814137892348544513245275107329742003872827344689.1 x45 - 3x44 - 108x43 + 296x42 + 5217x41 - 13005x40 - 149828x39 + 337863x38 + 2868057x37 - 5809689x36 - 38881407x35 + 70098207x34 + 387120467x33 - 613625013x32 - 2896408122x31 + 3972622452x30 + 16519787829x29 - 19205853294x28 - 72406643558x27 + 69489283683x26 + 244599321027x25 - 187254237300x24 - 635787323022x23 + 371102281773x22 + 1263897395760x21 - 528600088722x20 - 1901669780781x19 + 520023114157x18 + 2134290033054x17 - 327330093672x16 - 1754567507744x15 + 107410900356x14 + 1034842778925x13 + 1036802542x12 - 428135520330x11 - 14111627571x10 + 121049080943x9 + 4346148948x8 - 22551409551x7 - 290753084x6 + 2597605155x5 - 77625633x4 - 161647682x3 + 13050165x2 + 3741168x - 437977 \( 3^{60}\cdot 7^{30}\cdot 11^{36} \) $C_3\times C_{15}$ (as 45T2) Trivial (GRH)
45.1.461788013129114908410483449590003725369038828566163185526779909482248505594982451554016695549.1 x45 + x - 3 \( 41\cdot 281\cdot 2689\cdot 3061\cdot 9790127\cdot 497404856720178834753693302562002159288580122855457096966807286973147607143 \) $S_{45}$ (as 45T10923) n/a
45.3.6058627165206947772659446834243918770516708613809690476129633884301485702351604141067529951203.1 x45 - 3x - 1 \( -\,3^{45}\cdot 66012539\cdot 28278051239\cdot 68372307116461\cdot 16067992358028006974094700413220621293241 \) $S_{45}$ (as 45T10923) n/a
45.1.6058627165206947773155574123146601061506006978600515855618695047286794030995045341323877607453.1 x45 + 3x - 1 \( 3^{45}\cdot 991\cdot 5482500513935539\cdot 377455214821004106697105676903957430884841884160251179 \) $S_{45}$ (as 45T10923) n/a
45.1.6058631529188731816763723424393999654375027816929603165874164465794139866673324741195703779328.1 x45 + 3x - 2 \( 2^{44}\cdot 3^{45}\cdot 8431\cdot 40996793\cdot 141817543613\cdot 2378150503072556132510163888173917789 \) $S_{45}$ (as 45T10923) n/a
45.1.244285858873146597270950485090359427655149499875459692556282517088442376963378236627476654939853.1 x45 - 2x - 3 \( 1294351\cdot 15211842839\cdot 12406932915542118318333796429503421775022365907034043080317641893056767027113877 \) $S_{45}$ (as 45T10923) n/a
45.1.244285858945301786549141643285464849500114249900281980391595599756436418244651127038142453210829.1 x45 - x - 3 \( 394759\cdot 17295724778674525629079\cdot 35778944257145220698016100371727896939679299851967974758576839513389 \) $S_{45}$ (as 45T10923) n/a
45.1.244285858945301786549143694059288410110167895105891152767631085936272938852198421955108642578125.1 x45 - 3 \( 3^{134}\cdot 5^{45} \) 45T144 n/a
45.45.1136296607981427246297191641801603901004077832833182160525696498824571613560438852133526835484889.1 x45 - 12x44 - 38x43 + 936x42 - 488x41 - 32994x40 + 61155x39 + 695151x38 - 1826452x37 - 9745559x36 + 31398650x35 + 95576968x34 - 363031278x33 - 668271620x32 + 3006554151x31 + 3299628259x30 - 18405469866x29 - 10819187452x28 + 84606290574x27 + 17798672756x26 - 293624042239x25 + 25779977473x24 + 766879229695x23 - 259704306954x22 - 1488735953755x21 + 843265985246x20 + 2094958274346x19 - 1672596038928x18 - 2036992655261x17 + 2211683013511x16 + 1229593352332x15 - 1960884055901x14 - 305227614428x13 + 1128154934100x12 - 126915280282x11 - 391023252143x10 + 124192084723x9 + 69369604379x8 - 37452923715x7 - 3334757683x6 + 4610823573x5 - 413774775x4 - 188088413x3 + 35065204x2 - 872335x + 619 \( 13^{30}\cdot 31^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.2176994311579143098665490695095923140252535181569079054888955137870853680040351334565004592301826321.1 x45 - x44 - 88x43 + 83x42 + 3486x41 - 3092x40 - 82393x39 + 68502x38 + 1298642x37 - 1008411x36 - 14455343x35 + 10441803x34 + 117428375x33 - 78557259x32 - 709738502x31 + 437535596x30 + 3225742725x29 - 1822257498x28 - 11074210163x27 + 5697019051x26 + 28704796942x25 - 13361047180x24 - 55904143642x23 + 23423035295x22 + 81043444290x21 - 30561670072x20 - 86189587932x19 + 29605929893x18 + 65831554861x17 - 21311114591x16 - 35027996039x15 + 11388975649x14 + 12410963786x13 - 4429059287x12 - 2711901594x11 + 1176564667x10 + 302440276x9 - 189664142x8 - 3791931x7 + 14878752x6 - 2048263x5 - 256726x4 + 86268x3 - 7415x2 + 215x - 1 \( 181^{44} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.3.2538735027699687144412949043193794155334981938018953417004197950355756515384020435188568211066978304.1 x45 - 4x - 2 \( -\,2^{44}\cdot 2834789\cdot 50906920605427195566727055793056252609442010581017707883785519702989763984245671 \) $S_{45}$ (as 45T10923) n/a
45.1.2538735027704051126196993147470384305415865796338156536916887694886338008038184756909168339240806429.1 x45 + 4x - 1 \( 41\cdot 547\cdot 107899001480198069\cdot 1049128696814844200913942061815894663458796386336770071320289318330982069823083 \) $S_{45}$ (as 45T10923) n/a
45.1.2538735027708415107981036755619685552814458665358994866004197950355756515384020435188568211066978304.1 x45 + 4x - 2 \( 2^{44}\cdot 7\cdot 2687\cdot 7672411003064197011128146422219758607223049237728835572181071717898989380370681541 \) $S_{45}$ (as 45T10923) n/a
45.45.16527441490674381067348948889146522048718287580785548225593089356497792068001085725808918264262962961.1 x45 - 4x44 - 114x43 + 468x42 + 5696x41 - 24132x40 - 165566x39 + 729869x38 + 3130045x37 - 14526130x36 - 40702810x35 + 202181480x34 + 374739344x33 - 2040701711x32 - 2468141099x31 + 15280860430x30 + 11523689449x29 - 86102308596x28 - 36476021474x27 + 368042106614x26 + 66266177672x25 - 1197228116258x24 + 511532340x23 + 2959992694385x22 - 394556499523x21 - 5529580093472x20 + 1265687493078x19 + 7719490702430x18 - 2271295840968x17 - 7914078560767x16 + 2645087732416x15 + 5804631677810x14 - 2048306537737x13 - 2929193071000x12 + 1039444940408x11 + 957147248584x10 - 333732759991x9 - 182597145321x8 + 64595300484x7 + 16257686900x6 - 6916885901x5 - 166352258x4 + 298954277x3 - 40977465x2 + 2118031x - 36851 \( 11^{36}\cdot 37^{40} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.1.19192994859835473355074744872607517828470978752000567240134947162857788042359527794953668092003090432.1 x45 - 2x - 4 \( 2^{86}\cdot 166289\cdot 17194056911\cdot 97370596099401809\cdot 891032222208071115812369072217086199036083 \) $S_{45}$ (as 45T10923) n/a
45.1.19192994859835509432669383969212002292962206261198182455865052837142211957640472205046331907996909568.1 x45 + 2x - 4 \( 2^{86}\cdot 59\cdot 4204468550022735231197289241839185259716162221609033017672820541904702343 \) $S_{45}$ (as 45T10923) n/a
45.45.21716721949231054286553290309851361797375923410546325048215508572159529453624298126626868783164571129.1 x45 - 12x44 - 50x43 + 1120x42 - 626x41 - 44264x40 + 106520x39 + 966733x38 - 3644562x37 - 12564205x36 + 68449875x35 + 92270622x34 - 830216501x33 - 202049055x32 + 6933616229x31 - 3181542881x30 - 41084005259x29 + 40234212427x28 + 174510130968x27 - 250382990469x26 - 527354195438x25 + 1015613064703x24 + 1094857977723x23 - 2871848912941x22 - 1403630755463x21 + 5763542313829x20 + 629825101852x19 - 8167242308412x18 + 1257688359124x17 + 7983130477206x16 - 2778691581109x15 - 5144196139934x14 + 2589633668016x13 + 2011525458240x12 - 1316532612469x11 - 396963769511x10 + 358975449036x9 + 14178066293x8 - 45168898819x7 + 5258463166x6 + 1537215457x5 - 288043322x4 - 5291206x3 + 2457345x2 - 9309x - 6089 \( 7^{30}\cdot 61^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.1.76771973380714800368540484776128561547606454015039703186896834125835534205860133326675258804296220672.1 x45 - 3x - 4 \( 2^{89}\cdot 3^{45}\cdot 61\cdot 1183211\cdot 1595562959\cdot 364561370664661220582384110700994703 \) $S_{45}$ (as 45T10923) n/a
45.45.99953767787456648146270917992226818804825612223555542932825373503718412411221640597660289227243073561.1 x45 - 12x44 - 68x43 + 1390x42 - 278x41 - 68270x40 + 176199x39 + 1808389x38 - 8154574x37 - 26005805x36 + 196321268x35 + 127187382x34 - 2913805970x33 + 2272631340x32 + 27669670927x31 - 52510157887x30 - 162002621792x29 + 526806359978x28 + 468745083598x27 - 3175101889498x26 + 532391340063x25 + 12135569776697x24 - 10651958891479x23 - 28871893561060x22 + 45196495080913x21 + 38272655903792x20 - 105664143365844x19 - 13349385343870x18 + 153132315545987x17 - 41028745873427x16 - 141811047613612x15 + 76543731297893x14 + 83515595010770x13 - 65499266094722x12 - 29808531214812x11 + 32918818373161x10 + 5404646072895x9 - 10084991417837x8 - 16286468525x7 + 1821205338619x6 - 180698614131x5 - 173451418339x4 + 28592722199x3 + 6396948952x2 - 1303357845x - 3078919 \( 19^{30}\cdot 31^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.299215681303998835585125432825671967739342947202402933846152911778748517690473818220198154449462890625.1 x45 - 5x44 - 120x43 + 570x42 + 6560x41 - 29130x40 - 216795x39 + 884935x38 + 4846835x37 - 17873115x36 - 77748559x35 + 254358990x34 + 926664900x33 - 2637505030x32 - 8389061335x31 + 20318079721x30 + 58494148730x29 - 117428976980x28 - 316667682495x27 + 510052425895x26 + 1335050206763x25 - 1653394093375x24 - 4375338382740x23 + 3923851568060x22 + 11069977015865x21 - 6532787291841x20 - 21348397264600x19 + 6845293868685x18 + 30760204370920x17 - 2712180162090x16 - 32145143355065x15 - 3532224571660x14 + 23314933370325x13 + 6500465979650x12 - 10976198292280x11 - 4703287953351x10 + 3011509345140x9 + 1752830160915x8 - 400149323895x7 - 327698710405x6 + 19849150584x5 + 30510229725x4 + 7497705x3 - 1362119415x2 - 14453695x + 22808701 \( 5^{72}\cdot 19^{40} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.3.1189520361647311641758426463337537892861867432950966956771500000000000000000000000000000000000000000000.1 x45 - 5x - 2 \( -\,2^{44}\cdot 5^{45}\cdot 73\cdot 44175746519\cdot 6490952564449\cdot 14705222713099\cdot 7728853529686445339 \) $S_{45}$ (as 45T10923) n/a
45.3.2331459899057296634593715767930075025465673353711726231865473889294756562549082445912063121795654296875.1 x45 - 5x - 3 \( -\,5^{43}\cdot 157\cdot 1531\cdot 4729\cdot 4801\cdot 15817\cdot 31873\cdot 97849\cdot 18359951437\cdot 35107655355337\cdot 11818574496687068323309 \) $S_{45}$ (as 45T10923) n/a
45.45.6444338306249279600681470320699578378786756892621858688031629726344906572421677992679178714752197265625.1 x45 - 135x43 - 45x42 + 8145x41 + 5076x40 - 290700x39 - 253620x38 + 6857235x37 + 7452610x36 - 113268978x35 - 144333495x34 + 1355213265x33 + 1957216455x32 - 11983335705x31 - 19266777171x30 + 79141746870x29 + 140783463765x28 - 391240008255x27 - 773615354895x26 + 1437267934764x25 + 3215872493700x24 - 3839971488165x23 - 10109340177300x22 + 7085017431465x21 + 23873005106874x20 - 7751347674075x19 - 41764000577760x18 + 1270029598110x17 + 52868417349600x16 + 10969424061639x15 - 46623586775670x14 - 19170786833010x13 + 26882974463550x12 + 16378966497285x11 - 8981328155022x10 - 7825331392520x9 + 1236586926825x8 + 1998991148400x7 + 84870189090x6 - 236319447555x5 - 31508573040x4 + 10090496085x3 + 1414058625x2 - 109748520x - 10224199 \( 3^{110}\cdot 5^{72} \) $C_{45}$ (as 45T1) n/a
45.1.14571624430179569793531616197812945660407245922831180230813125000000000000000000000000000000000000000000.1 x45 + 5x - 2 \( 2^{42}\cdot 5^{46}\cdot 53\cdot 22846124160878734429091761\cdot 19254823833912889768262197122097 \) $S_{45}$ (as 45T10923) n/a
45.45.40844008098536976898528926596491646392449447921859499771891413268750045487853347665634360111802937199321.1 x45 - 3x44 - 126x43 + 350x42 + 7095x41 - 18207x40 - 237254x39 + 560949x38 + 5280957x37 - 11465163x36 - 83127609x35 + 164960568x34 + 959694733x33 - 1729668720x32 - 8316855543x31 + 13495839126x30 + 54911329452x29 - 79318322604x28 - 278624618803x27 + 353264598507x26 + 1090386630918x25 - 1193881051406x24 - 3286918329246x23 + 3054422504946x22 + 7584376524784x21 - 5885779838802x20 - 13239515051214x19 + 8489225140885x18 + 17170281215082x17 - 9118144480932x16 - 16115327765898x15 + 7281918623109x14 + 10535410010724x13 - 4323241543716x12 - 4518883017183x11 + 1877328461526x10 + 1138556965481x9 - 554295751305x8 - 124509763362x7 + 91825606123x6 - 3656082528x5 - 5240896776x4 + 961503906x3 - 1541688x2 - 11847522x + 756289 \( 3^{60}\cdot 61^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.3.58286497720718274810144680747147506051478902807466401720132587310255469418507345835678279399871826171875.1 x45 - 5x - 1 \( -\,5^{45}\cdot 13\cdot 47\cdot 241\cdot 313\cdot 10159\cdot 1560681193\cdot 441481146991\cdot 24561359840613046207\cdot 258812619101427272051 \) $S_{45}$ (as 45T10923) n/a
45.1.58286497720718274810144680747643633340381585098455700084923412689744530581492654164321720600128173828125.1 x45 + 5x - 1 \( 5^{46}\cdot 101\cdot 677\cdot 119549\cdot 842977\cdot 818961053\cdot 72679644912024426232556982099430424324466270773 \) $S_{45}$ (as 45T10923) n/a
45.1.58286497965004133755446467296539263755218654063128946008419152767631085936272938852198421955108642578125.1 x45 + 5x - 3 \( 5^{46}\cdot 29\cdot 699023939659537\cdot 20232880457368282662668714658655455158647688849895180601 \) $S_{45}$ (as 45T10923) n/a
45.1.58363269700157616775720169005079208736173110322987448401920000000000000000000000000000000000000000000000.1 x45 + 5x - 4 \( 2^{89}\cdot 5^{46}\cdot 149\cdot 4453111121681026051225605378891768357546101 \) $S_{45}$ (as 45T10923) n/a
45.45.202328376069000568231882298692586415768387771371083469740034658547467305567124640219844877719879150390625.1 x45 - 165x43 - 25x42 + 12060x41 + 3486x40 - 519330x39 - 214140x38 + 14776560x37 + 7718745x36 - 295077669x35 - 182852610x34 + 4284179615x33 + 3016157820x32 - 46197393465x31 - 35772719505x30 + 374607222195x29 + 310484223975x28 - 2298730688540x27 - 1988244775980x26 + 10695933805596x25 + 9407317026635x24 - 37696094037390x23 - 32764647222885x22 + 100289481110340x21 + 83332538318277x20 - 200279250507195x19 - 152889355168310x18 + 297466429398705x17 + 198745289480940x16 - 323624520119411x15 - 178210655500665x14 + 251547979741875x13 + 105785393431525x12 - 134218212107550x11 - 38927292179565x10 + 46104688292390x9 + 7956837983055x8 - 9173261413650x7 - 765305596255x6 + 891053703312x5 + 40709257785x4 - 38148076985x3 - 1973427960x2 + 606052050x + 47691757 \( 3^{60}\cdot 5^{72}\cdot 7^{30} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.690502119755999041650933728181031670984689765738417760130764409811234288886886833270367975576584121365281.1 x45 - 4x44 - 146x43 + 698x42 + 8985x41 - 51888x40 - 296427x39 + 2177976x38 + 5305247x37 - 57476954x36 - 34012820x35 + 1002110429x34 - 626632964x33 - 11753633659x32 + 18688879395x31 + 91599636078x30 - 237738671647x29 - 440115277508x28 + 1861290436646x27 + 876346054868x26 - 9636797401413x25 + 3638557275086x24 + 33031864898329x23 - 35155604700368x22 - 70196515943930x21 + 133850962002890x20 + 68063148815178x19 - 296060971462243x18 + 63115875057640x17 + 386991855136149x16 - 292070548579474x15 - 252378957195025x14 + 393110942284862x13 - 3989425272418x12 - 248373295675609x11 + 116468486134606x10 + 55635812822046x9 - 63558461838326x8 + 10039317831256x7 + 9501878099079x6 - 4834005607020x5 + 527330092663x4 + 166660835109x3 - 51025747438x2 + 4407259697x - 98524081 \( 19^{40}\cdot 31^{36} \) $C_{45}$ (as 45T1) Trivial (GRH)
45.1.1410078564568613873545070773590240888464282883732347297164554903066424618174323768471367657184600830078125.1 x45 - 5 \( 3^{90}\cdot 5^{89} \) 45T144 n/a
45.45.14871644565877379464047221413905669257566616785997555307108986009149096115256167660961155530887613343502969.1 x45 - 9x44 - 117x43 + 1356x42 + 4455x41 - 86382x40 + 4596x39 + 3024342x38 - 5886234x37 - 62776190x36 + 223064037x35 + 751420521x34 - 4412144961x33 - 3725440704x32 + 54057041307x31 - 28786222110x30 - 426126343077x29 + 673008341841x28 + 2086637912508x27 - 5873721786378x26 - 5053254569676x25 + 30385493847345x24 - 5904503198856x23 - 98922911866245x22 + 93605350409913x21 + 191046717571311x20 - 349809055484526x19 - 147155959283342x18 + 707251464652203x17 - 217826629489476x16 - 797405893685064x15 + 705978096992721x14 + 378713501361567x13 - 782478874269585x12 + 139525392055671x11 + 385252617992454x10 - 250562776470715x9 - 36607492213488x8 + 95351499735039x7 - 31186566059442x6 - 5609742817023x5 + 6576945066567x4 - 1857401457582x3 + 224711418717x2 - 8430571116x - 155181097 \( 3^{110}\cdot 31^{36} \) $C_{45}$ (as 45T1) n/a
45.45.112369590570788381690576561372238600351878236661366984431016423673684387952713968402481343001103760716137281.1 x45 - x44 - 132x43 + 301x42 + 7581x41 - 27065x40 - 236809x39 + 1229173x38 + 3960874x37 - 33065607x36 - 18797995x35 + 555716542x34 - 619527603x33 - 5732299123x32 + 15235581842x31 + 30609318626x30 - 168897578817x29 + 17112929652x28 + 1054352970448x27 - 1501837759883x26 - 3320354588485x25 + 10782132568732x24 - 107051646226x23 - 36936809485370x22 + 41830258905956x21 + 53083505529011x20 - 152445251342987x19 + 42842896041923x18 + 229594603485553x17 - 272222797945867x16 - 70739760279828x15 + 364126674087072x14 - 209159107972130x13 - 142016333800362x12 + 231101895832035x11 - 63870399263881x10 - 62082302112786x9 + 49149720219336x8 - 3670701881262x7 - 8040338248733x6 + 2565873490427x5 + 306896523050x4 - 230447557112x3 + 11171763392x2 + 5932497375x - 637239997 \( 271^{44} \) $C_{45}$ (as 45T1) n/a
45.45.2524373658125154706394844918628378076658288807428864227492811533944564375098081397291186234112097170769516929.1 x45 - 12x44 - 80x43 + 1424x42 + 1516x41 - 74554x40 + 63158x39 + 2282501x38 - 4255902x37 - 45636421x36 + 116693559x35 + 630121996x34 - 1971613347x33 - 6193698077x32 + 22855343401x31 + 44007670585x30 - 190617019593x29 - 226920195907x28 + 1172746429282x27 + 842990049201x26 - 5394671280584x25 - 2206384597765x24 + 18666651459717x23 + 3871477687999x22 - 48596558981735x21 - 4036750693451x20 + 94693820108958x19 + 1546861746446x18 - 136570614884744x17 + 956863921562x16 + 143064103358001x15 + 102341290612x14 - 105649963477592x13 - 2816833651750x12 + 52484763220205x11 + 2919265367283x10 - 16311452643376x9 - 1104335997267x8 + 2857645920655x7 + 105919440856x6 - 255094574859x5 + 8466426668x4 + 8654209646x3 - 1026667213x2 + 14388119x + 1507921 \( 13^{30}\cdot 61^{42} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.16231657867656434784079327524611544008919694606149931176692579515382388545323258023038948936636103876569768641.1 x45 - 4x44 - 182x43 + 580x42 + 15229x41 - 35784x40 - 771497x39 + 1192202x38 + 26249095x37 - 21282586x36 - 630350986x35 + 101314575x34 + 10957230656x33 + 4486413137x32 - 139417559409x31 - 128053969474x30 + 1299055132435x29 + 1816090021004x28 - 8766783201604x27 - 16658946907076x26 + 41634175647095x25 + 105419181053468x24 - 129801264303153x23 - 468263377533416x22 + 210417608171782x21 + 1454214352745320x20 + 113648989333176x19 - 3097196961798623x18 - 1450605309591570x17 + 4363534978783893x16 + 3500531720706214x15 - 3807203164617687x14 - 4497701352355764x13 + 1760587964112158x12 + 3382378542501223x11 - 165688879950870x10 - 1480388191573288x9 - 205996027224400x8 + 358811476146228x7 + 88160595048203x6 - 42989403930482x5 - 13014696239433x4 + 1879419740489x3 + 646702182070x2 + 19352782133x - 2280393187 \( 19^{40}\cdot 41^{36} \) $C_{45}$ (as 45T1) n/a
45.45.10545108934706338891798128702038367211232038450374220017375873952542211309878091906311559140599834540421350891761.1 x45 - 4x44 - 194x43 + 836x42 + 16500x41 - 76882x40 - 811248x39 + 4130184x38 + 25559474x37 - 145049280x36 - 538597921x35 + 3530594867x34 + 7615564821x33 - 61610572814x32 - 68317895227x31 + 786429242050x30 + 287086043611x29 - 7425134094508x28 + 1391788361320x27 + 52087220030130x26 - 32183862662002x25 - 271116028008606x24 + 264064430436474x23 + 1039304723755570x22 - 1345885450620938x21 - 2889398096911074x20 + 4691240971935913x19 + 5661912712400497x18 - 11481658937434788x17 - 7388527635358822x16 + 19748315799639590x15 + 5543796759733632x14 - 23515522924776395x13 - 895060410571712x12 + 18817979236586386x11 - 2391413888018270x10 - 9652129249107031x9 + 2328285637187904x8 + 2951322314183680x7 - 960094366581828x6 - 477351520888160x5 + 190413802657905x4 + 31093339218140x3 - 15654659537914x2 - 188842256201x + 306884845321 \( 11^{36}\cdot 73^{40} \) $C_{45}$ (as 45T1) n/a
45.45.23518854458506786548183561086555508726667593641132303121759124944650820067393315326853553415276110172271728515625.1 x45 - 15x44 - 90x43 + 2245x42 + 840x41 - 149682x40 + 233625x39 + 5893830x38 - 15309120x37 - 153159405x36 + 505833687x35 + 2780167860x34 - 10777640365x33 - 36390969195x32 + 160894854450x31 + 349558305696x30 - 1751940770010x29 - 2483116182570x28 + 14226276458010x27 + 13037929556940x26 - 87229174471284x25 - 50137706272620x24 + 406336593221610x23 + 138267603359730x22 - 1439822630956295x21 - 262195938148443x20 + 3868718864967360x19 + 311910060390275x18 - 7821266721741750x17 - 175081417856730x16 + 11738415157749574x15 - 32411856380685x14 - 12806776910595090x13 + 44301971232950x12 + 9836514943009755x11 + 117791800035840x10 - 5063789878500180x9 - 176503490451285x8 + 1618208036238660x7 + 90536277582715x6 - 283553373081756x5 - 18640864878495x4 + 21751317924475x3 + 974579665770x2 - 434206226325x + 15265738099 \( 3^{60}\cdot 5^{72}\cdot 13^{30} \) $C_3\times C_{15}$ (as 45T2) n/a
45.45.113216382687461650071313536057296345285263294886173578470037538978889266917671196921446608030237257480621337890625.1 x45 - 5x44 - 160x43 + 750x42 + 11505x41 - 50155x40 - 494360x39 + 1986075x38 + 14230290x37 - 52164095x36 - 291406682x35 + 964545715x34 + 4397605380x33 - 13004815240x32 - 49959045085x31 + 130642800011x30 + 432522297350x29 - 990600139100x28 - 2869775308765x27 + 5708642080635x26 + 14596727897136x25 - 25057837740180x24 - 56657367198895x23 + 83639181826930x22 + 166254328426775x21 - 211229538265138x20 - 363413515659395x19 + 400345366164140x18 + 579295247175435x17 - 562802728668865x16 - 653353980492525x15 + 576820421117985x14 + 498607009071010x13 - 419400709761500x12 - 239088316288415x11 + 206781182240081x10 + 61592552138015x9 - 64047534431150x8 - 4385990367335x7 + 10818687121615x6 - 1100963095469x5 - 726031492295x4 + 153651014240x3 + 10678696865x2 - 4993044930x + 335982349 \( 5^{72}\cdot 37^{40} \) $C_{45}$ (as 45T1) n/a
45.45.612823173021751971297676000847719042376493061735873445231828455051262946540529457157884846548736505117837633099361.1 x45 - x44 - 250x43 - 57x42 + 27766x41 + 34148x40 - 1801054x39 - 3701713x38 + 75995397x37 + 210980315x36 - 2204269403x35 - 7656169786x34 + 45208500184x33 + 192019854445x32 - 660457840142x31 - 3478319662546x30 + 6740250648134x29 + 46682393472693x28 - 44214268231149x27 - 471014331370572x26 + 119457837724165x25 + 3599175944415558x24 + 920658436866528x23 - 20872201046519003x22 - 13494994939768731x21 + 91678287510298882x20 + 87997267245853232x19 - 303360026160716188x18 - 371303902979085816x17 + 749732931610001378x16 + 1094855896004641434x15 - 1366727950240442050x14 - 2306120975093560007x13 + 1803267431605382487x12 + 3471556977526533885x11 - 1666809346078423573x10 - 3682047656706158942x9 + 1008367868417943528x8 + 2668021411897921137x7 - 327662726329807390x6 - 1248245094003212175x5 + 152924933759221x4 + 338163088283119511x3 + 38015736547359269x2 - 40401517332214916x - 8937046621536643 \( 19^{40}\cdot 31^{42} \) $C_{45}$ (as 45T1) n/a

Next

Download all search results for