Learn more about

Further refine search

Results (displaying matches 1-50 of 349) Next

Label Polynomial Discriminant Galois group Class group
44.0.48891877682180103607391812819535352418736437208892474989920547427561.1 x44 - x43 + x41 - x40 + x38 - x37 + x35 - x34 + x32 - x31 + x29 - x28 + x26 - x25 + x23 - x22 + x21 - x19 + x18 - x16 + x15 - x13 + x12 - x10 + x9 - x7 + x6 - x4 + x3 - x + 1 \( 3^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) $[69]$ (GRH)
44.0.27408730583433337351085467861786155262978057758761987414355526669041664.1 x44 - x42 + x40 - x38 + x36 - x34 + x32 - x30 + x28 - x26 + x24 - x22 + x20 - x18 + x16 - x14 + x12 - x10 + x8 - x6 + x4 - x2 + 1 \( 2^{44}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) $[201]$ (GRH)
44.0.178513238104201322328190155912326613169430683702516665804416989739876352.1 x44 - 3x22 + 3 \( 2^{44}\cdot 3^{43}\cdot 11^{36} \) 44T32 n/a
44.2.2068117596927640321165109390461188067644487899059619639247994733388362803.1 x44 - x - 1 \( -\,1752761753\cdot 4199398081\cdot 12798563620399\cdot 21953514971453602939058763964642505815429 \) $S_{44}$ (as 44T2113) n/a
44.0.3714575655453538975253519356486345582985254755453847127268314361572265625.1 x44 - x43 + 2x42 - 3x41 + 5x40 - 8x39 + 13x38 - 21x37 + 34x36 - 55x35 + 89x34 - 144x33 + 233x32 - 377x31 + 610x30 - 987x29 + 1597x28 - 2584x27 + 4181x26 - 6765x25 + 10946x24 - 17711x23 + 28657x22 + 17711x21 + 10946x20 + 6765x19 + 4181x18 + 2584x17 + 1597x16 + 987x15 + 610x14 + 377x13 + 233x12 + 144x11 + 89x10 + 55x9 + 34x8 + 21x7 + 13x6 + 8x5 + 5x4 + 3x3 + 2x2 + x + 1 \( 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.6091524468845815638846997953624350524431889522210325630882624592675376276321.1 x44 - x43 - x42 + 3x41 - x40 - 5x39 + 7x38 + 3x37 - 17x36 + 11x35 + 23x34 - 45x33 - x32 + 91x31 - 89x30 - 93x29 + 271x28 - 85x27 - 457x26 + 627x25 + 287x24 - 1541x23 + 967x22 - 3082x21 + 1148x20 + 5016x19 - 7312x18 - 2720x17 + 17344x16 - 11904x15 - 22784x14 + 46592x13 - 1024x12 - 92160x11 + 94208x10 + 90112x9 - 278528x8 + 98304x7 + 458752x6 - 655360x5 - 262144x4 + 1572864x3 - 1048576x2 - 2097152x + 4194304 \( 7^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.114960548321016780585007182194561118164129919569806438859981042930068127481856.1 x44 - 2x42 + 4x40 - 8x38 + 16x36 - 32x34 + 64x32 - 128x30 + 256x28 - 512x26 + 1024x24 - 2048x22 + 4096x20 - 8192x18 + 16384x16 - 32768x14 + 65536x12 - 131072x10 + 262144x8 - 524288x6 + 1048576x4 - 2097152x2 + 4194304 \( 2^{66}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.114960548321016780585007182194561118164129919569806438859981042930068127481856.2 x44 + 2x42 + 4x40 + 8x38 + 16x36 + 32x34 + 64x32 + 128x30 + 256x28 + 512x26 + 1024x24 + 2048x22 + 4096x20 + 8192x18 + 16384x16 + 32768x14 + 65536x12 + 131072x10 + 262144x8 + 524288x6 + 1048576x4 + 2097152x2 + 4194304 \( 2^{66}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.342865339180420288801608222738062084913425127327306009945459663867950439453125.1 x44 - x43 + 11x42 - 12x41 + 77x40 - 74x39 + 424x38 - 368x37 + 2052x36 - 1675x35 + 8154x34 - 6259x33 + 27860x32 - 18614x31 + 82991x30 - 50150x29 + 218995x28 - 122605x27 + 487495x26 - 239465x25 + 942321x24 - 367121x23 + 1562162x22 - 556097x21 + 2230394x20 - 742219x19 + 2512113x18 - 607127x17 + 2369760x16 - 263798x15 + 1750478x14 - 273124x13 + 1076097x12 - 237409x11 + 402111x10 - 41911x9 + 123922x8 + 19642x7 + 17600x6 + 1439x5 + 2686x4 - 361x3 + 51x2 - 6x + 1 \( 5^{33}\cdot 23^{40} \) $C_{44}$ (as 44T1) $[45013]$ (GRH)
44.0.1625926291579854267093042018571578660715394142508043230799997286804887850450944.1 x44 - 21x42 + 251x40 - 2052x38 + 12691x36 - 61778x34 + 243629x32 - 788303x30 + 2113175x28 - 4700059x26 + 8677408x24 - 13214290x22 + 16492213x20 - 16617826x18 + 13339732x16 - 8284333x14 + 3900832x12 - 1305733x10 + 306592x8 - 41184x6 + 3641x4 - 66x2 + 1 \( 2^{44}\cdot 3^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.126825968135030638560321151355314543066931802675799049463396459301394072929140409.1 x44 - x43 - 2x42 + 5x41 + x40 - 16x39 + 13x38 + 35x37 - 74x36 - 31x35 + 253x34 - 160x33 - 599x32 + 1079x31 + 718x30 - 3955x29 + 1801x28 + 10064x27 - 15467x26 - 14725x25 + 61126x24 - 16951x23 - 166427x22 - 50853x21 + 550134x20 - 397575x19 - 1252827x18 + 2445552x17 + 1312929x16 - 8649585x15 + 4710798x14 + 21237957x13 - 35370351x12 - 28343520x11 + 134454573x10 - 49424013x9 - 353939706x8 + 502211745x7 + 559607373x6 - 2066242608x5 + 387420489x4 + 5811307335x3 - 6973568802x2 - 10460353203x + 31381059609 \( 11^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.181375764426442332776050749828434842919201892356144879261148162186145782470703125.1 x44 - x43 - 44x42 + 43x41 + 902x40 - 859x39 - 11441x38 + 10582x37 + 100567x36 - 89985x35 - 650236x34 + 560251x33 + 3203650x32 - 2643399x31 - 12294569x30 + 9651170x29 + 37253225x28 - 27602055x27 - 89808680x26 + 62206625x25 + 172779011x24 - 110572386x23 - 265002643x22 + 154430258x21 + 322457859x20 - 168027624x19 - 308473797x18 + 140446403x17 + 228768475x16 - 88323383x15 - 128871012x14 + 40552321x13 + 53558102x12 - 13016729x11 - 15742859x10 + 2742874x9 + 3073662x8 - 347233x7 - 361455x6 + 24089x5 + 21786x4 - 986x3 - 504x2 + 24x + 1 \( 5^{33}\cdot 23^{42} \) $C_{44}$ (as 44T1) Trivial (GRH)
44.0.220354102204022216469632262406301193826529556992340065310359890959262847900390625.1 x44 - x43 + 32x42 - 21x41 + 608x40 - 302x39 + 7441x38 - 2334x37 + 66293x36 - 12644x35 + 432280x34 - 28161x33 + 2141316x32 + 33285x31 + 8001765x30 + 693375x29 + 23077394x28 + 2792911x27 + 51292654x26 + 7229970x25 + 89635724x24 + 12947356x23 + 123068074x22 + 17592284x21 + 133953248x20 + 17840654x19 + 114270996x18 + 13803865x17 + 76240835x16 + 7576064x15 + 38619954x14 + 2830121x13 + 14698338x12 + 489978x11 + 3921204x10 - 46901x9 + 736586x8 - 41505x7 + 78482x6 - 8849x5 + 5761x4 - 386x3 + 117x2 + 6x + 1 \( 3^{22}\cdot 5^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.860115008245742907292219227824365111518443501386754869093198564719785672888549376.1 x44 + 45x42 + 944x40 + 12258x38 + 110332x36 + 730456x34 + 3683681x32 + 14457937x30 + 44741027x28 + 109922933x26 + 214871383x24 + 333482657x22 + 408408103x20 + 390551177x18 + 287137498x16 + 158825372x14 + 64156063x12 + 18161627x10 + 3397768x8 + 384582x6 + 22748x4 + 528x2 + 1 \( 2^{44}\cdot 3^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.860115008245742907292219227824365111518443501386754869093198564719785672888549376.1 x44 - 43x42 + 860x40 - 10622x38 + 90724x36 - 568616x34 + 2708289x32 - 10016751x30 + 29148711x28 - 67217827x26 + 123140835x24 - 178931535x22 + 205096155x20 - 183670815x18 + 126676230x16 - 65934180x14 + 25178895x12 - 6781005x10 + 1216380x8 - 133210x6 + 7700x4 - 176x2 + 1 \( 2^{44}\cdot 3^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) Trivial (GRH)
44.0.860115008245742907292219227824365111518443501386754869093198564719785672888549376.2 x44 + 23x42 + 299x40 + 2668x38 + 18055x36 + 96646x34 + 421245x32 + 1516689x30 + 4557519x28 + 11467961x26 + 24199128x24 + 42662286x22 + 62532561x20 + 75392022x18 + 73935156x16 + 57768387x14 + 35301228x12 + 16195335x10 + 5446584x8 + 1210352x6 + 180389x4 + 11638x2 + 529 \( 2^{44}\cdot 3^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.860115008245742907292219227824365111518443501386754869093198564719785672888549376.3 x44 + 3x42 + 9x40 + 27x38 + 81x36 + 243x34 + 729x32 + 2187x30 + 6561x28 + 19683x26 + 59049x24 + 177147x22 + 531441x20 + 1594323x18 + 4782969x16 + 14348907x14 + 43046721x12 + 129140163x10 + 387420489x8 + 1162261467x6 + 3486784401x4 + 10460353203x2 + 31381059609 \( 2^{44}\cdot 3^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.911492415245810901464684242547025474783143247960902506117531055360598236993683456.1 x44 + 61x40 + 1522x36 + 20041x32 + 150032x28 + 642172x24 + 1506232x20 + 1760035x16 + 860639x12 + 127699x8 + 2926x4 + 1 \( 2^{88}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.5004064091921318968476654103385174794239787756320190509810011268963311800364358601.1 x44 - x43 + 4x42 - 7x41 + 19x40 - 40x39 + 97x38 - 217x37 + 508x36 - 1159x35 + 2683x34 - 6160x33 + 14209x32 - 32689x31 + 75316x30 - 173383x29 + 399331x28 - 919480x27 + 2117473x26 - 4875913x25 + 11228332x24 - 25856071x23 + 59541067x22 + 77568213x21 + 101054988x20 + 131649651x19 + 171515313x18 + 223433640x17 + 291112299x16 + 379188621x15 + 494148276x14 + 643417587x13 + 839027241x12 + 1091225520x11 + 1425856203x10 + 1847820357x9 + 2429748252x8 + 3113712819x7 + 4175531937x6 + 5165606520x5 + 7360989291x4 + 8135830269x3 + 13947137604x2 + 10460353203x + 31381059609 \( 13^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.116567320065927752512435466812933331534234135648947894549180382317450046539306640625.1 x44 - x43 + 43x42 - 39x41 + 856x40 - 700x39 + 10478x38 - 7678x37 + 88356x36 - 57644x35 + 545008x34 - 314432x33 + 2548537x32 - 1290809x31 + 9238279x30 - 4075043x29 + 26320891x28 - 10020719x27 + 59401115x26 - 19318239x25 + 106508095x24 - 29235139x23 + 151556799x22 - 34552164x21 + 170215728x20 - 30533255x19 + 148629623x18 - 11758433x17 + 94928616x16 + 36112685x15 + 30135721x14 + 126072207x13 - 23633656x12 + 220881720x11 - 44029406x10 + 233441302x9 - 35764283x8 + 155778230x7 - 8938748x6 + 18093321x5 + 18069001x4 + 120313546x3 - 192566274x2 - 256263936x + 1026529561 \( 3^{22}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.116567320065927752512435466812933331534234135648947894549180382317450046539306640625.1 x44 - x43 - 67x42 + 66x41 + 2006x40 - 1940x39 - 35522x38 + 33582x37 + 415391x36 - 381809x35 - 3396482x34 + 3014673x33 + 20088042x32 - 17073369x31 - 87848856x30 + 70775487x29 + 288431096x28 - 217655609x27 - 718686410x26 + 501030801x25 + 1368730205x24 - 867699404x23 - 1999332041x22 + 1131696716x21 + 2238799988x20 - 1107666220x19 - 1911947202x18 + 806431252x17 + 1231950206x16 - 430200535x15 - 588270804x14 + 164470157x13 + 202516659x12 - 43750410x11 - 48240456x10 + 7822102x9 + 7480922x8 - 908640x7 - 688078x6 + 65581x5 + 31906x4 - 2504x3 - 504x2 + 24x + 1 \( 3^{22}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) Trivial (GRH)
44.0.116567320065927752512435466812933331534234135648947894549180382317450046539306640625.2 x44 - x43 - 23x42 + 24x41 + 298x40 - 322x39 - 2644x38 + 2966x37 + 17733x36 - 20699x35 - 93680x34 + 114379x33 + 400546x32 - 514925x31 - 1402310x30 + 1917235x29 + 4042594x28 - 5959829x27 - 9550726x26 + 15510555x25 + 18239299x24 - 33749854x23 - 27151731x22 + 60965664x21 + 28718628x20 - 92631926x19 - 11478724x18 + 118848820x17 - 33434940x16 - 1406311x15 - 22927136x14 - 576983889x13 + 635212253x12 + 643308528x11 - 1294716116x10 + 1724346364x9 - 424183664x8 - 3407721010x7 + 3830694322x6 + 209294181x5 - 4039808114x4 + 4041269764x3 - 1473288x2 - 4104644424x + 4106118241 \( 3^{22}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.116567320065927752512435466812933331534234135648947894549180382317450046539306640625.3 x44 - x43 - 3x42 + 7x41 + 5x40 - 33x39 + 13x38 + 119x37 - 171x36 - 305x35 + 989x34 + 231x33 - 4187x32 + 3263x31 + 13485x30 - 26537x29 - 27403x28 + 133551x27 - 23939x26 - 510265x25 + 606021x24 + 1435039x23 - 3859123x22 + 5740156x21 + 9696336x20 - 32656960x19 - 6128384x18 + 136756224x17 - 112242688x16 - 434782208x15 + 883752960x14 + 855375872x13 - 4390387712x12 + 968884224x11 + 16592666624x10 - 20468203520x9 - 45902462976x8 + 127775277056x7 + 55834574848x6 - 566935683072x5 + 343597383680x4 + 1924145348608x3 - 3298534883328x2 - 4398046511104x + 17592186044416 \( 3^{22}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.123530257101695962804411525139448797152840382474861376742359040000000000000000000000.1 x44 + 63x42 + 1771x40 + 29412x38 + 322363x36 + 2470134x34 + 13694893x32 + 56167749x30 + 172989335x28 + 404160705x26 + 720751936x24 + 983588334x22 + 1025844301x20 + 813203334x18 + 484862836x16 + 213849639x14 + 68058536x12 + 15071199x10 + 2201056x8 + 195624x6 + 9361x4 + 198x2 + 1 \( 2^{44}\cdot 5^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.2.305114887787034545533482994753792544099984477864830063456929036764624997185075806208.1 x44 - 2x - 1 \( -\,2^{44}\cdot 6849881\cdot 418859713\cdot 847100666339\cdot 26342648577937357\cdot 270892830308402529909668477 \) $S_{44}$ (as 44T2113) n/a
44.0.361358208821422691858000111178424879775250540561407860223115640123091356736736779241.1 x44 - x43 - 31x42 + 18x41 + 509x40 - 128x39 - 6323x38 + 711x37 + 64913x36 - 2855x35 - 548822x34 - 30450x33 + 3909507x32 + 497028x31 - 24053724x30 - 3501489x29 + 127000724x28 + 22049413x27 - 570173510x26 - 120800376x25 + 2191193723x24 + 441547756x23 - 7154579015x22 - 1235011630x21 + 19357719068x20 + 3692553824x19 - 42800540592x18 - 8560769600x17 + 77181753152x16 + 8780862080x15 - 109191557376x14 - 4336701952x13 + 115169783808x12 + 13857435648x11 - 86371995648x10 - 18961448960x9 + 47011856384x8 + 1711374336x7 - 14905901056x6 + 3448373248x5 + 3020947456x4 - 373293056x3 - 84934656x2 - 12582912x + 4194304 \( 3^{22}\cdot 7^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.482179487665033966874817964307376476160282778171317425736173928285756467369658548224.1 x44 + 44x42 + 901x40 + 11400x38 + 99790x36 + 641208x34 + 3131721x32 + 11878176x30 + 35442612x28 + 83778736x26 + 157236844x24 + 233880352x22 + 274130056x20 + 250699168x18 + 176290339x16 + 93382192x14 + 36217051x12 + 9883588x10 + 1792219x8 + 197912x6 + 11506x4 + 264x2 + 1 \( 2^{88}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.482179487665033966874817964307376476160282778171317425736173928285756467369658548224.1 x44 - 44x42 + 901x40 - 11400x38 + 99790x36 - 641208x34 + 3131721x32 - 11878176x30 + 35442612x28 - 83778736x26 + 157236844x24 - 233880352x22 + 274130056x20 - 250699168x18 + 176290339x16 - 93382192x14 + 36217051x12 - 9883588x10 + 1792219x8 - 197912x6 + 11506x4 - 264x2 + 1 \( 2^{88}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) Trivial (GRH)
44.0.482179487665033966874817964307376476160282778171317425736173928285756467369658548224.2 x44 + 69x40 + 1978x36 + 30521x32 + 274712x28 + 1463260x24 + 4481688x20 + 7339875x16 + 5623799x12 + 1588587x8 + 104742x4 + 529 \( 2^{88}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.666454163935483494165986073535521413339908119119439689887653437787720225729135378569.1 x44 - x43 - 43x42 + 42x41 + 861x40 - 820x39 - 10660x38 + 9880x37 + 91390x36 - 82251x35 - 575757x34 + 501942x33 + 2760681x32 - 2324784x31 - 10295472x30 + 8347680x29 + 30260340x28 - 23535820x27 - 70607460x26 + 52451256x25 + 131128140x24 - 92561040x23 - 193536720x22 + 129024480x21 + 225792840x20 - 141120525x19 - 206253075x18 + 119759850x17 + 145422675x16 - 77558760x15 - 77558760x14 + 37442160x13 + 30421755x12 - 13037895x11 - 8436285x10 + 3124550x9 + 1562275x8 - 480700x7 - 177100x6 + 42504x5 + 10626x4 - 1771x3 - 253x2 + 22x + 1 \( 89^{43} \) $C_{44}$ (as 44T1) Trivial (GRH)
44.0.1829975953789394019358992112190249409734798500798529867331745089665450995586633384881.1 x44 - x43 + 5x42 - 9x41 + 29x40 - 65x39 + 181x38 - 441x37 + 1165x36 - 2929x35 + 7589x34 - 19305x33 + 49661x32 - 126881x31 + 325525x30 - 833049x29 + 2135149x28 - 5467345x27 + 14007941x26 - 35877321x25 + 91909085x24 - 235418369x23 + 603054709x22 + 941673476x21 + 1470545360x20 + 2296148544x19 + 3586032896x18 + 5598561280x17 + 8745570304x16 + 13648674816x15 + 21333606400x14 + 33261092864x13 + 52073332736x12 + 80971038720x11 + 127322292224x10 + 196561862656x9 + 312727306240x8 + 473520144384x7 + 777389080576x6 + 1116691496960x5 + 1992864825344x4 + 2473901162496x3 + 5497558138880x2 + 4398046511104x + 17592186044416 \( 17^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.2.3140438096120241027479680198707543436628572952335275100262123533432981417671820050432.1 x44 - 3 \( -\,2^{88}\cdot 3^{43}\cdot 11^{36} \) 44T32 n/a
44.0.6819629148478549071885414510662846662953220513498055755117351820034888330697796222976.1 x44 - 42x42 + 1004x40 - 16416x38 + 203056x36 - 1976896x34 + 15592256x32 - 100902784x30 + 540972800x28 - 2406430208x26 + 8885665792x24 - 27062865920x22 + 67552104448x20 - 136133230592x18 + 218558169088x16 - 271461023744x14 + 255644925952x12 - 171145035776x10 + 80371253248x8 - 21592276992x6 + 3817865216x4 - 138412032x2 + 4194304 \( 2^{66}\cdot 3^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.6819629148478549071885414510662846662953220513498055755117351820034888330697796222976.2 x44 + 42x42 + 1004x40 + 16416x38 + 203056x36 + 1976896x34 + 15592256x32 + 100902784x30 + 540972800x28 + 2406430208x26 + 8885665792x24 + 27062865920x22 + 67552104448x20 + 136133230592x18 + 218558169088x16 + 271461023744x14 + 255644925952x12 + 171145035776x10 + 80371253248x8 + 21592276992x6 + 3817865216x4 + 138412032x2 + 4194304 \( 2^{66}\cdot 3^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.2.9324513547559134892826045191577446742294744628247914989599228665319853246172884893696.1 x44 - 4x - 4 \( -\,2^{44}\cdot 24247\cdot 97990843\cdot 223081146969136263764871304788251362938130205676361193346911 \) $S_{44}$ (as 44T2113) n/a
44.0.18038797319548284898458878583487078903826576240804983903895101460113093254140797914061.1 x44 - x + 2 \( 7\cdot 29\cdot 17117\cdot 330203\cdot 700658261310857\cdot 22438645050869674813183930046208745431734319350316123839041 \) $S_{44}$ (as 44T2113) n/a
44.2.18038797319548302242232245613754598807607865052837142211957640472205046331907996909568.1 x44 - 2 \( -\,2^{131}\cdot 11^{44} \) 44T32 n/a
44.0.18038797319548302242232245613754598807607865052837142211957640472205046331907996909568.1 x44 + 2 \( 2^{131}\cdot 11^{44} \) 44T32 n/a
44.2.18343912207333286013942167998454746146098677154666486095578048901422376412126883348480.1 x44 - 2x - 2 \( -\,2^{44}\cdot 3\cdot 5\cdot 677\cdot 1613\cdot 13103\cdot 37912031\cdot 8935109131219\cdot 14342016103886670000189339932352984520031 \) $S_{44}$ (as 44T2113) n/a
44.0.21142110273569853339470849219791293286477383243143882449296109338159240255146818984969.1 x44 - x43 - 4x42 + 9x41 + 11x40 - 56x39 + x38 + 279x37 - 284x36 - 1111x35 + 2531x34 + 3024x33 - 15679x32 + 559x31 + 77836x30 - 80631x29 - 308549x28 + 711704x27 + 831041x26 - 4389561x25 + 234356x24 + 21713449x23 - 22885229x22 + 108567245x21 + 5858900x20 - 548695125x19 + 519400625x18 + 2224075000x17 - 4821078125x16 - 6299296875x15 + 30404687500x14 + 1091796875x13 - 153115234375x12 + 147656250000x11 + 617919921875x10 - 1356201171875x9 - 1733398437500x8 + 8514404296875x7 + 152587890625x6 - 42724609375000x5 + 41961669921875x4 + 171661376953125x3 - 381469726562500x2 - 476837158203125x + 2384185791015625 \( 19^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.65347506006797164323533696798768413693852562329201668296707932160000000000000000000000.1 x44 + 41x42 + 784x40 + 9282x38 + 76180x36 + 459888x34 + 2114697x32 + 7568133x30 + 21358299x28 + 47872465x26 + 85431991x24 + 121194085x22 + 135920335x20 + 119357605x18 + 80900650x16 + 41459620x14 + 15683335x12 + 3901015x10 + 2054320x8 - 6489250x6 + 32853580x4 - 164244624x2 + 821223649 \( 2^{44}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.65347506006797164323533696798768413693852562329201668296707932160000000000000000000000.1 x44 - 69x42 + 2139x40 - 39468x38 + 484495x36 - 4193682x34 + 26499197x32 - 125010267x30 + 447055439x28 - 1224773115x26 + 2588447416x24 - 4235761650x22 + 5369828745x20 - 5258413410x18 + 3950328660x16 - 2250421545x14 + 955257620x12 - 294507525x10 + 63543480x8 - 9077640x6 + 785565x4 - 34914x2 + 529 \( 2^{44}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) Trivial (GRH)
44.0.65347506006797164323533696798768413693852562329201668296707932160000000000000000000000.2 x44 - 47x42 + 1036x40 - 14238x38 + 136828x36 - 977616x34 + 5391753x32 - 23533371x30 + 82732335x28 - 237396295x26 + 562190611x24 - 1110544651x22 + 1852435411x20 - 2651394691x18 + 3329083366x16 - 3775046236x14 + 3998027671x12 - 4080345361x10 + 4101904756x8 - 4105687106x6 + 4106094436x4 - 4106117712x2 + 4106118241 \( 2^{44}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.65347506006797164323533696798768413693852562329201668296707932160000000000000000000000.3 x44 - 5x42 + 25x40 - 125x38 + 625x36 - 3125x34 + 15625x32 - 78125x30 + 390625x28 - 1953125x26 + 9765625x24 - 48828125x22 + 244140625x20 - 1220703125x18 + 6103515625x16 - 30517578125x14 + 152587890625x12 - 762939453125x10 + 3814697265625x8 - 19073486328125x6 + 95367431640625x4 - 476837158203125x2 + 2384185791015625 \( 2^{44}\cdot 5^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.191158492466532603992882058813386761401107535956984758058028173625115327713733756218489.1 x44 - x43 + 46x42 - 45x41 + 1195x40 - 1150x39 + 21299x38 - 20149x37 + 287730x36 - 267581x35 + 3072523x34 - 2804942x33 + 26692099x32 - 23887157x31 + 191331250x30 - 167444093x29 + 1142837707x28 - 975393614x27 + 5704151939x26 - 4728758325x25 + 23804513458x24 - 19075755133x23 + 82643603403x22 - 63567853467x21 + 237057619920x20 - 173490244577x19 + 554044068881x18 - 380558605544x17 + 1037868132567x16 - 657255020887x15 + 1512341393536x14 - 854306074281x13 + 1655465958953x12 - 799339188480x11 + 1266628178647x10 - 472858178519x9 + 634019315968x8 - 183040091689x7 + 183593805097x6 - 13681085952x5 + 19238856919x4 + 3193810729x3 + 1973987328x2 + 217790679x + 27008809 \( 3^{22}\cdot 7^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.44.191158492466532603992882058813386761401107535956984758058028173625115327713733756218489.1 x44 - x43 - 86x42 + 81x41 + 3445x40 - 3040x39 - 85351x38 + 70151x37 + 1464534x36 - 1113779x35 - 18468767x34 + 12899872x33 + 177261061x32 - 112761701x31 - 1323060098x30 + 759251593x29 + 7780382701x28 - 3984124736x27 - 36301909279x26 + 16381285599x25 + 134698547590x24 - 52792119595x23 - 396744216375x22 + 132783613203x21 + 922279857882x20 - 258361552805x19 - 1675313579545x18 + 383501034280x17 + 2343182319195x16 - 425622641659x15 - 2471777086526x14 + 343273729047x13 + 1911152162483x12 - 192962821056x11 - 1040820630209x10 + 70437336577x9 + 377125555258x8 - 13999395253x7 - 83413545257x6 + 289196448x5 + 9759539347x4 + 438024589x3 - 453637806x2 - 49033617x - 368597 \( 3^{22}\cdot 7^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.191158492466532603992882058813386761401107535956984758058028173625115327713733756218489.2 x44 - 20x43 + 189x42 - 1124x41 + 4865x40 - 17456x39 + 58421x38 - 190050x37 + 582353x36 - 1651670x35 + 4443991x34 - 11616036x33 + 29347307x32 - 70941366x31 + 165084544x30 - 373261630x29 + 819539932x28 - 1741244694x27 + 3587123034x26 - 7185027240x25 + 13992949317x24 - 26465017896x23 + 48644839484x22 - 86902148486x21 + 150906753803x20 - 254398639764x19 + 416538699753x18 - 661207715179x17 + 1018298320297x16 - 1516385399452x15 + 2187310150678x14 - 3038199352295x13 + 4080627086016x12 - 5240849624589x11 + 6499724444701x10 - 7615237158361x9 + 8625505710097x8 - 9008819848319x7 + 9179431123587x6 - 8198182177669x5 + 7374297175226x4 - 5145387322896x3 + 3993217874024x2 - 1687064084492x + 1104623059513 \( 3^{22}\cdot 7^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.191158492466532603992882058813386761401107535956984758058028173625115327713733756218489.3 x44 - x43 + 6x42 - 11x41 + 41x40 - 96x39 + 301x38 - 781x37 + 2286x36 - 6191x35 + 17621x34 - 48576x33 + 136681x32 - 379561x31 + 1062966x30 - 2960771x29 + 8275601x28 - 23079456x27 + 64457461x26 - 179854741x25 + 502142046x24 - 1401415751x23 + 3912125981x22 + 7007078755x21 + 12553551150x20 + 22481842625x19 + 40285913125x18 + 72123300000x17 + 129306265625x16 + 231310234375x15 + 415221093750x14 + 741330078125x13 + 1334775390625x12 + 2371875000000x11 + 4302001953125x10 + 7557373046875x9 + 13952636718750x8 + 23834228515625x7 + 45928955078125x6 + 73242187500000x5 + 156402587890625x4 + 209808349609375x3 + 572204589843750x2 + 476837158203125x + 2384185791015625 \( 3^{22}\cdot 7^{22}\cdot 23^{42} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.202576997637141672681589718254834044731913984308775018218427786812480361023243743657984.1 x44 - 63x42 + 1954x40 - 39159x38 + 564136x36 - 6171204x34 + 52905976x32 - 362220741x30 + 2002105655x28 - 8980281297x26 + 32710198942x24 - 96439370415x22 + 228524812948x20 - 430395212448x18 + 634098522688x16 - 714985491456x14 + 598979244032x12 - 357650202624x10 + 143735308288x8 - 35340484608x6 + 4755030016x4 - 207618048x2 + 4194304 \( 2^{44}\cdot 7^{22}\cdot 23^{40} \) $C_2\times C_{22}$ (as 44T2) n/a
44.0.1555282614282872031686695202841759550456839851168205668482420621934906547732043786064001.1 x44 - x43 - x42 - 82x41 + 77x40 + 73x39 + 2795x38 - 2452x37 - 2193x36 - 51847x35 + 42213x34 + 35713x33 + 576416x32 - 432884x31 - 345487x30 - 3995639x29 + 2790104x28 + 2010938x27 + 17436469x26 - 11948291x25 - 6590980x24 - 47156450x23 + 36319435x22 + 9637447x21 + 76421426x20 - 81395780x19 + 4175237x18 - 78460015x17 + 124870243x16 - 45435254x15 + 82436729x14 - 106904257x13 + 95684734x12 - 78566744x11 + 62868338x10 - 89632848x9 + 65796469x8 - 36457247x7 + 9020998x6 - 24902176x5 + 25739321x4 + 13163316x3 - 5336842x2 + 199578x + 1151329 \( 3^{22}\cdot 67^{42} \) $C_2\times C_{22}$ (as 44T2) n/a

Next

Download all search results for