Learn more about

Further refine search

Results (displaying matches 1-50 of 374) Next

Label Polynomial Discriminant Galois group Class group
42.0.118181386580595879976868414312001964434038548836769923458287039207.1 x42 - x35 + x28 - x21 + x14 - x7 + 1 \( -\,7^{77} \) $C_{42}$ (as 42T1) $[43]$ (GRH)
42.0.9380082945933081406113456619151991432292083579779389915131296484043.1 x42 - x41 + x40 - x39 + x38 - x37 + x36 - x35 + x34 - x33 + x32 - x31 + x30 - x29 + x28 - x27 + x26 - x25 + x24 - x23 + x22 - x21 + x20 - x19 + x18 - x17 + x16 - x15 + x14 - x13 + x12 - x11 + x10 - x9 + x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + 1 \( -\,43^{41} \) $C_{42}$ (as 42T1) $[211]$ (GRH)
42.0.148800059914663860358058572923291111558062081238577126241568395062423.1 x42 - x + 1 \( -\,250460976091\cdot 2191665374655671317777039\cdot 271074578334716402754124978170427 \) $S_{42}$ (as 42T9491) n/a
42.2.151461815175929284355485371405217804070033859898900428230218670969705.1 x42 - x - 1 \( 5\cdot 3355730803775717\cdot 9027053958291963044489986637364046584886518936629873 \) $S_{42}$ (as 42T9491) Trivial (GRH)
42.0.157423697967496898655574527484105282356823164787085832078904297275852324864.1 x42 - 2x21 + 2 \( -\,2^{62}\cdot 3^{42}\cdot 7^{42} \) $C_2\times S_3\times F_7$ (as 42T95) Trivial (GRH)
42.0.176602720807616761537805583365440112858555316650025456145851095351761290003.1 x42 + 21x40 + 252x38 + 2065x36 - x35 + 12789x34 - 7x33 + 62181x32 + 7x31 + 244265x30 + 574x29 + 784101x28 + 5341x27 + 2075577x26 + 29988x25 + 4529364x24 + 118188x23 + 8142834x22 + 346087x21 + 11951541x20 + 767956x19 + 14210490x18 + 1288070x17 + 13430361x16 + 1624252x15 + 9960725x14 + 1486219x13 + 5587183x12 + 983626x11 + 2322670x10 + 429093x9 + 648396x8 + 121077x7 + 117649x6 + 14763x5 + 7399x4 + 56x3 + 245x2 + 14x + 1 \( -\,3^{21}\cdot 7^{76} \) $C_{42}$ (as 42T1) $[136619]$ (GRH)
42.42.1236219045653317330764639083558080790009887216550178193020957667462329030021.1 x42 - 42x40 + 819x38 - 9842x36 - x35 + 81585x34 + 35x33 - 494802x32 - 560x31 + 2272424x30 + 5425x29 - 8069424x28 - 35525x27 + 22428252x26 + 166257x25 - 49085400x24 - 573300x23 + 84672315x22 + 1480051x21 - 114717330x20 - 2877896x19 + 121090515x18 + 4206314x17 - 98285670x16 - 4577216x15 + 60174899x14 + 3643150x13 - 27041546x12 - 2063243x11 + 8580418x10 + 798357x9 - 1816836x8 - 198948x7 + 235249x6 + 29211x5 - 15974x4 - 2170x3 + 392x2 + 56x + 1 \( 3^{21}\cdot 7^{77} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.0.1245035751069475618296892513017846796759617999278950389304336491491851278123.1 x42 + 3 \( -\,3^{83}\cdot 7^{42} \) $S_3\times F_7$ (as 42T45) Trivial (GRH)
42.0.2281836760183646137444154412268560109828024514076489472840222217265158917203.1 x42 - x41 + 21x40 - 18x39 + 248x38 - 191x37 + 1996x36 - 1375x35 + 12088x34 - 7495x33 + 57373x32 - 31825x31 + 219409x30 - 108700x29 + 684645x28 - 300153x27 + 1757705x26 - 677756x25 + 3715466x24 - 1242500x23 + 6455978x22 - 1853597x21 + 9148985x20 - 2205194x19 + 10469894x18 - 2090336x17 + 9505112x16 - 1507895x15 + 6709547x14 - 839645x13 + 3559478x12 - 314951x11 + 1368367x10 - 93808x9 + 355278x8 - 10362x7 + 58036x6 - 2497x5 + 4950x4 + 165x3 + 176x2 - 11x + 1 \( -\,3^{21}\cdot 43^{40} \) $C_{42}$ (as 42T1) $[179249]$ (GRH)
42.0.74252462132603256348231837398371002884673933378885582779211491265789772693504.1 x42 + 42x40 + 819x38 + 9842x36 + 81585x34 + 494802x32 + 2272424x30 + 8069423x28 + 22428224x26 + 49085050x24 + 84669739x22 + 114704933x20 + 121049551x18 + 98190708x16 + 60019861x14 + 26865216x12 + 8444436x10 + 1749188x8 + 215453x6 + 13181x4 + 294x2 + 1 \( -\,2^{42}\cdot 7^{76} \) $C_{42}$ (as 42T1) $[1923461]$ (GRH)
42.42.98118980687896783910098639727548084722605054105289047332129555342401833439729.1 x42 - x41 - 42x40 + 42x39 + 818x38 - 818x37 - 9803x36 + 9803x35 + 80884x34 - 80884x33 - 487103x32 + 487103x31 + 2214673x30 - 2214673x29 - 7756167x28 + 7756167x27 + 21159269x26 - 21159269x25 - 45176143x24 + 45176143x23 + 75433697x22 - 75433697x21 - 97942948x20 + 97942948x19 + 97804877x18 - 97804877x17 - 73850908x16 + 73850908x15 + 41150012x14 - 41150012x13 - 16350448x12 + 16350448x11 + 4413607x10 - 4413607x9 - 753918x8 + 753918x7 + 72886x6 - 72886x5 - 3267x4 + 3267x3 + 44x2 - 44x + 1 \( 3^{21}\cdot 43^{41} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.42.519767234928222794437622861788597020192717533652199079454480438860528408854528.1 x42 - 42x40 + 819x38 - 9842x36 + 81585x34 - 494802x32 + 2272424x30 - 8069425x28 + 22428280x26 - 49085750x24 + 84674891x22 - 114729727x20 + 121131479x18 - 98380632x16 + 60329941x14 - 27217932x12 + 8716708x10 - 1885324x8 + 256221x6 - 19551x4 + 686x2 - 7 \( 2^{42}\cdot 7^{77} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.0.959396304051793463814262846982490027578741814649477038563926538598268329263104.1 x42 + 41x40 + 780x38 + 9139x36 + 73815x34 + 435897x32 + 1947792x30 + 6724520x28 + 18156204x26 + 38567100x24 + 64512240x22 + 84672315x20 + 86493225x18 + 67863915x16 + 40116600x14 + 17383860x12 + 5311735x10 + 1081575x8 + 134596x6 + 8855x4 + 231x2 + 1 \( -\,2^{42}\cdot 43^{40} \) $C_{42}$ (as 42T1) $[2, 1878326]$ (GRH)
42.2.5853261720260687939540400640891858773248095902186156682496904257250187676745728.1 x42 - 2x - 1 \( 2^{43}\cdot 151\cdot 4132611804876851\cdot 111869437509421489132043\cdot 9532243245509920520310487 \) $S_{42}$ (as 42T9491) n/a
42.0.6368697991994218840106904466505523750060174615816448189841639477612393330114560.1 x42 - 4x + 4 \( -\,2^{42}\cdot 5\cdot 14815048403\cdot 223886382998191\cdot 87315245161684521362070855931280070146911 \) $S_{42}$ (as 42T9491) n/a
42.42.8050468075656610214837511220114705524038488445061950919170859146595001220703125.1 x42 - 63x40 + 1764x38 - 29043x36 - 29x35 + 313845x34 + 1295x33 - 2356263x32 - 24605x31 + 12710649x30 + 262360x29 - 50338309x28 - 1751015x27 + 148468453x26 + 7757582x25 - 329114310x24 - 23675820x23 + 550880022x22 + 50961633x21 - 696364921x20 - 78352652x19 + 661675518x18 + 86284422x17 - 467756891x16 - 67555180x15 + 241883075x14 + 36893815x13 - 89215119x12 - 13584956x11 + 22638112x10 + 3191321x9 - 3752308x8 - 437383x7 + 374801x6 + 29995x5 - 19355x4 - 798x3 + 343x2 + 14x - 1 \( 5^{21}\cdot 7^{76} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.42.41254041074227118944013302420247071185885898029927512658248841159725538158313472.1 x42 - 43x40 + 860x38 - 10621x36 + 90687x34 - 567987x32 + 2701776x30 - 9970840x28 + 28915436x26 - 66335412x24 + 120609840x22 - 173376645x20 + 195747825x18 - 171655785x16 + 115000920x14 - 57500460x12 + 20764055x10 - 5167525x8 + 826804x6 - 76153x4 + 3311x2 - 43 \( 2^{42}\cdot 43^{41} \) $C_{42}$ (as 42T1) n/a
42.0.56353276529596271503862578540802938668269419115433656434196014026165008544921875.1 x42 + 42x40 + 819x38 + 9842x36 - 29x35 + 81585x34 - 1015x33 + 494802x32 - 16240x31 + 2272424x30 - 157325x29 + 8070266x28 - 1030225x27 + 22451828x26 - 4821453x25 + 49380100x24 - 16625700x23 + 86841307x22 - 42945897x21 + 125155604x20 - 83971762x19 + 155582203x18 - 126598108x17 + 178243674x16 - 155985200x15 + 191428385x14 - 177440270x13 + 185472266x12 - 199822441x11 + 177861992x10 - 194249279x9 + 208189352x8 - 152082148x7 + 226081541x6 - 195873685x5 + 141819720x4 - 297986948x3 + 34945918x2 - 144775946x + 599786069 \( -\,5^{21}\cdot 7^{77} \) $C_{42}$ (as 42T1) n/a
42.42.104017955712751803355033526522081856753017553948018605377854818344593048095703125.1 x42 - x41 - 61x40 + 56x39 + 1654x38 - 1379x37 - 26380x36 + 19735x35 + 276302x34 - 183047x33 - 2012061x32 + 1164081x31 + 10536175x30 - 5248100x29 - 40536685x28 + 17139885x27 + 116229751x26 - 41141876x25 - 250648402x24 + 73243022x23 + 408521488x22 - 97102633x21 - 503598537x20 + 95768202x19 + 467783098x18 - 69790048x17 - 324502952x16 + 37071837x15 + 165565463x14 - 14037193x13 - 60679502x12 + 3661307x11 + 15419833x10 - 625768x9 - 2575782x8 + 66132x7 + 260062x6 - 4477x5 - 13750x4 + 275x3 + 286x2 - 11x - 1 \( 5^{21}\cdot 43^{40} \) $C_{42}$ (as 42T1) n/a
42.2.170923973240076585006662819799708267353672048284155422169897317900338421540323328.1 x42 - 4x - 4 \( 2^{42}\cdot 37\cdot 479\cdot 22037\cdot 3375017\cdot 4905809483\cdot 799858695525167\cdot 7513694603813636232170428411 \) $S_{42}$ (as 42T9491) n/a
42.0.324288161319821499007340327393811274304092572235194518204010139360633960649457664.1 x42 - 2x + 2 \( -\,2^{42}\cdot 19\cdot 11483\cdot 457151\cdot 739269240650992830782068773491929591684851555740229248233 \) $S_{42}$ (as 42T9491) n/a
42.0.330141423039932056009335431462346361105176413679566626915938304840648254793187328.1 x42 + 2 \( -\,2^{83}\cdot 3^{42}\cdot 7^{42} \) $C_2\times S_3\times F_7$ (as 42T95) n/a
42.2.330141423039932056009335431462346361105176413679566626915938304840648254793187328.1 x42 - 2 \( 2^{83}\cdot 3^{42}\cdot 7^{42} \) $C_2\times S_3\times F_7$ (as 42T95) n/a
42.2.335994684760042613011330535530881447906260255123938735627866470320662548936916992.1 x42 - 2x - 2 \( 2^{42}\cdot 13\cdot 43\cdot 7237697\cdot 7281116753\cdot 16009936396480001782447\cdot 161984247228508288433890361 \) $S_{42}$ (as 42T9491) n/a
42.42.496897759422042196258605771077406782550407598249513303021389442457964675897236469.1 x42 - x41 - 67x40 + 62x39 + 1993x38 - 1704x37 - 34847x36 + 27519x35 + 399768x34 - 291838x33 - 3181854x32 + 2151119x31 + 18125561x30 - 11376768x29 - 75199314x28 + 43948028x27 + 229267037x26 - 125109956x25 - 515411960x24 + 263200585x23 + 854114535x22 - 408541162x21 - 1040280967x20 + 465602383x19 + 926307827x18 - 386475878x17 - 597992464x16 + 230741151x15 + 276295754x14 - 97190872x13 - 89602671x12 + 28039534x11 + 19807180x10 - 5297092x9 - 2853616x8 + 611802x7 + 248962x6 - 38836x5 - 11508x4 + 1155x3 + 217x2 - 14x - 1 \( 7^{28}\cdot 29^{39} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.0.4472772095648327544266441640449519840379754819764800031247757188817501068115234375.1 x42 - x41 + 44x40 - 44x39 + 904x38 - 904x37 + 11525x36 - 11525x35 + 102212x34 - 102212x33 + 670199x32 - 670199x31 + 3371975x30 - 3371975x29 + 13342815x28 - 13342815x27 + 42258251x26 - 42258251x25 + 108593663x24 - 108593663x23 + 229203503x22 - 229203503x21 + 402580148x20 - 402580148x19 + 598327973x18 - 598327973x17 + 769983758x16 - 769983758x15 + 884984678x14 - 884984678x13 + 942485138x12 - 942485138x11 + 963249193x10 - 963249193x9 + 968416718x8 - 968416718x7 + 969243522x6 - 969243522x5 + 969319675x4 - 969319675x3 + 969322986x2 - 969322986x + 969323029 \( -\,5^{21}\cdot 43^{41} \) $C_{42}$ (as 42T1) n/a
42.0.16778739246697564329550246936340186720321059686137149293129858772813957238199098503.1 x42 - x41 + 13x40 - 18x39 + 139x38 - 250x37 + 1451x36 + 321x35 + 11819x34 + 7069x33 + 101147x32 + 34723x31 + 906407x30 - 143662x29 + 2718926x28 - 434521x27 + 7093735x26 - 1731307x25 + 17818760x24 - 17036040x23 + 50814721x22 - 44435389x21 + 124550915x20 - 97201554x19 + 258557330x18 - 191477895x17 + 222793332x16 - 183429282x15 + 205234539x14 - 104619060x13 + 150123312x12 + 66144604x11 + 21062459x10 + 5929237x9 + 1586736x8 + 394344x7 + 106707x6 + 17635x5 + 2858x4 + 449x3 + 67x2 + 9x + 1 \( -\,7^{35}\cdot 29^{36} \) $C_{42}$ (as 42T1) n/a
42.0.50695215285987529776146634789549734025587976443244441326301426824919673222871754267.1 x42 - 16x39 + 1066x36 + 13384x33 + 639480x30 + 581064x27 + 10535858x24 - 25402305x21 + 171805922x18 - 184669454x15 + 198189968x12 + 3751640x9 + 57337x6 + 267x3 + 1 \( -\,3^{63}\cdot 29^{36} \) $C_{42}$ (as 42T1) n/a
42.0.121842012423466724043945276342536999203112328184628981033554149680639161638328200007.1 x42 - x41 + 62x40 - 55x39 + 1885x38 - 1493x37 + 36890x36 - 26096x35 + 516884x34 - 325868x33 + 5474760x32 - 3063183x31 + 45214327x30 - 22319399x29 + 296463014x28 - 128129100x27 + 1558565095x26 - 584173775x25 + 6595257074x24 - 2118905803x23 + 22443263173x22 - 6093288301x21 + 61089146298x20 - 13772999112x19 + 131703790552x18 - 24134677936x17 + 221581028128x16 - 32118789120x15 + 284876509184x14 - 31567940608x13 + 271846162432x12 - 21964134400x11 + 184905250816x10 - 10296512512x9 + 84546772992x8 - 2848260096x7 + 23814799360x6 - 531300352x5 + 3554017280x4 + 28835840x3 + 213385216x2 - 11534336x + 2097152 \( -\,7^{21}\cdot 43^{40} \) $C_{42}$ (as 42T1) n/a
42.0.155718699466313184257207094263668545441599708733396657696588937331033553383727300608.1 x42 + 84x40 + 3276x38 + 78736x36 + 1305360x34 + 15833664x32 + 145435136x30 + 1032886144x28 + 5741625344x26 + 25131545600x24 + 86701812736x22 + 234915702784x20 + 495818960896x18 + 804378279936x16 + 983365402624x14 + 880319397888x12 + 553414557696x10 + 229269569536x8 + 56479711232x6 + 6910640128x4 + 308281344x2 + 2097152 \( -\,2^{63}\cdot 7^{76} \) $C_{42}$ (as 42T1) n/a
42.42.155718699466313184257207094263668545441599708733396657696588937331033553383727300608.1 x42 - 84x40 + 3276x38 - 78736x36 + 1305360x34 - 15833664x32 + 145435136x30 - 1032886144x28 + 5741625344x26 - 25131545600x24 + 86701812736x22 - 234915702784x20 + 495818960896x18 - 804378279936x16 + 983365402624x14 - 880319397888x12 + 553414557696x10 - 229269569536x8 + 56479711232x6 - 6910640128x4 + 308281344x2 - 2097152 \( 2^{63}\cdot 7^{76} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.42.565343212441678035532894502003808167878401992443661947648452445739810658542578516149.1 x42 - 81x40 - 4x39 + 2925x38 + 276x37 - 62221x36 - 8388x35 + 868038x34 + 148164x33 - 8369604x32 - 1690536x31 + 57288192x30 + 13101552x29 - 281708427x28 - 70649728x27 + 997233012x26 + 267447468x25 - 2528669823x24 - 709905600x23 + 4548805662x22 + 1311105276x21 - 5738345406x20 - 1666490856x19 + 5023839240x18 + 1442807064x17 - 3028872840x16 - 846440256x15 + 1246931667x14 + 334448784x13 - 345422658x12 - 87695253x11 + 62698236x10 + 14793089x9 - 7127757x8 - 1516980x7 + 472108x6 + 85806x5 - 16338x4 - 2275x3 + 252x2 + 21x - 1 \( 3^{56}\cdot 29^{39} \) $C_{42}$ (as 42T1) Trivial (GRH)
42.0.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1 x42 + 84x40 + 3276x38 + 78736x36 + 1305360x34 + 15833664x32 + 145435136x30 + 1032886400x28 + 5741639680x26 + 25131904000x24 + 86707088384x22 + 234966480896x20 + 496154537984x18 + 805934137344x16 + 988445753344x14 + 891877195776x12 + 571258175488x10 + 247113187328x8 + 67166797824x6 + 10250354688x4 + 719323136x2 + 14680064 \( -\,2^{63}\cdot 7^{77} \) $C_{42}$ (as 42T1) n/a
42.42.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1 x42 - 84x40 + 3276x38 - 78736x36 + 1305360x34 - 15833664x32 + 145435136x30 - 1032886400x28 + 5741639680x26 - 25131904000x24 + 86707088384x22 - 234966480896x20 + 496154537984x18 - 805934137344x16 + 988445753344x14 - 891877195776x12 + 571258175488x10 - 247113187328x8 + 67166797824x6 - 10250354688x4 + 719323136x2 - 14680064 \( 2^{63}\cdot 7^{77} \) $C_{42}$ (as 42T1) n/a
42.2.1552317511023484497006461990693717931517755755807346997289641876704990863800048828125.1 x42 - 5 \( 3^{42}\cdot 5^{41}\cdot 7^{42} \) $C_2\times S_3\times F_7$ (as 42T95) n/a
42.0.2011999877834826766225008958075022926316813554075780070378415668274435623250777079808.1 x42 + 82x40 + 3120x38 + 73112x36 + 1181040x34 + 13948704x32 + 124658688x30 + 860738560x28 + 4647988224x26 + 19746355200x24 + 66060533760x22 + 173408901120x20 + 354276249600x18 + 555941191680x16 + 657270374400x14 + 569634324480x12 + 348109864960x10 + 141764198400x8 + 35283533824x6 + 4642570240x4 + 242221056x2 + 2097152 \( -\,2^{63}\cdot 43^{40} \) $C_{42}$ (as 42T1) n/a
42.42.2011999877834826766225008958075022926316813554075780070378415668274435623250777079808.1 x42 - 82x40 + 3120x38 - 73112x36 + 1181040x34 - 13948704x32 + 124658688x30 - 860738560x28 + 4647988224x26 - 19746355200x24 + 66060533760x22 - 173408901120x20 + 354276249600x18 - 555941191680x16 + 657270374400x14 - 569634324480x12 + 348109864960x10 - 141764198400x8 + 35283533824x6 - 4642570240x4 + 242221056x2 - 2097152 \( 2^{63}\cdot 43^{40} \) $C_{42}$ (as 42T1) n/a
42.42.5239206534209069133889646882729090965733830111939046184442828436267483950448112600301.1 x42 - x41 - 85x40 + 85x39 + 3355x38 - 3355x37 - 81613x36 + 81613x35 + 1369379x34 - 1369379x33 - 16806205x32 + 16806205x31 + 156107459x30 - 156107459x29 - 1120160061x28 + 1120160061x27 + 6282191555x26 - 6282191555x25 - 27681539389x24 + 27681539389x23 + 95822936771x22 - 95822936771x21 - 259252432189x20 + 259252432189x19 + 542530659011x18 - 542530659011x17 - 863673531709x16 + 863673531709x15 + 1020501541571x14 - 1020501541571x13 - 863673531709x12 + 863673531709x11 + 497119576771x10 - 497119576771x9 - 180198260029x8 + 180198260029x7 + 36543447747x6 - 36543447747x5 - 3382656317x4 + 3382656317x3 + 89178819x2 - 89178819x - 998717 \( 7^{21}\cdot 43^{41} \) $C_{42}$ (as 42T1) n/a
42.0.86515994746897550947675385197225985831622982825258543026271873735800731799783414431744.1 x42 + 86x40 + 3440x38 + 84968x36 + 1450992x34 + 18175584x32 + 172913664x30 + 1276267520x28 + 7402351616x26 + 33963730944x24 + 123504476160x22 + 355075368960x20 + 801783091200x18 + 1406204190720x16 + 1884175073280x14 + 1884175073280x12 + 1360793108480x10 + 677317836800x8 + 216741707776x6 + 39926104064x4 + 3471835136x2 + 90177536 \( -\,2^{63}\cdot 43^{41} \) $C_{42}$ (as 42T1) n/a
42.42.86515994746897550947675385197225985831622982825258543026271873735800731799783414431744.1 x42 - 86x40 + 3440x38 - 84968x36 + 1450992x34 - 18175584x32 + 172913664x30 - 1276267520x28 + 7402351616x26 - 33963730944x24 + 123504476160x22 - 355075368960x20 + 801783091200x18 - 1406204190720x16 + 1884175073280x14 - 1884175073280x12 + 1360793108480x10 - 677317836800x8 + 216741707776x6 - 39926104064x4 + 3471835136x2 - 90177536 \( 2^{63}\cdot 43^{41} \) $C_{42}$ (as 42T1) n/a
42.0.124938828493629533000907736270182756286928467256210015044892719712262808512338377882811.1 x42 - 21x41 + 231x40 - 1750x39 + 10395x38 - 52269x37 + 233611x36 - 952918x35 + 3599785x34 - 12710201x33 + 42287014x32 - 133370664x31 + 400618099x30 - 1149584975x29 + 3160451592x28 - 8341179427x27 + 21174580693x26 - 51755274760x25 + 121953514697x24 - 277155797093x23 + 608007380806x22 - 1287295716241x21 + 2631847521996x20 - 5192066875520x19 + 9886990587068x18 - 18146977046303x17 + 32112635555588x16 - 54655115299659x15 + 89504829240548x14 - 140479267770793x13 + 211514505374151x12 - 303526580264439x11 + 416119886096880x10 - 538840804150264x9 + 662937764461147x8 - 758558920220686x7 + 819087800747125x6 - 798550011094073x5 + 729734808064227x4 - 562691756062212x3 + 407486767661645x2 - 201294019183845x + 99519182315771 \( -\,7^{76}\cdot 11^{21} \) $C_{42}$ (as 42T1) n/a
42.2.145623285001573634100250550474921067849138776627782144579392805206367874810820848413905.1 x42 - 3x + 1 \( 3^{42}\cdot 5\cdot 277\cdot 9883\cdot 24851\cdot 5267491\cdot 28880594132963764921\cdot 25718507492700353234963282659 \) $S_{42}$ (as 42T9491) n/a
42.0.180282079628321418522579756639824623344453525380673158224385384254625263736344592716927.1 x42 - x41 + 2x40 + 80x39 - 73x38 + 139x37 + 2635x36 - 2181x35 + 3934x34 + 46702x33 - 34779x32 + 59013x31 + 489577x30 - 325107x29 + 514966x28 + 3148122x27 - 1839378x26 + 2684924x25 + 12529404x24 - 6257436x23 + 8056643x22 + 30745048x21 - 12383236x20 + 11933159x19 + 46384476x18 - 13840937x17 + 3649186x16 + 41025120x15 - 8138959x14 - 9679906x13 + 28379769x12 - 8357477x11 + 3513515x10 + 45545418x9 - 12952087x8 + 8843411x7 + 29858262x6 - 8807791x5 + 14296232x4 - 4154414x3 - 181830x2 + 2389098x + 733913 \( -\,127^{41} \) $C_{42}$ (as 42T1) $[1528865]$ (GRH)
42.0.213117637842219136349783160187126852219651508028407629359584264706447783442638664863363.1 x42 - 4x41 + 62x40 - 200x39 + 2132x38 - 6208x37 + 46584x36 - 115568x35 + 701352x34 - 1537594x33 + 7769821x32 - 14875116x31 + 64656220x30 - 109927490x29 + 414171141x28 - 618138014x27 + 2041345075x26 - 2683015728x25 + 7816607585x24 - 8902561137x23 + 22976431713x22 - 22760113866x21 + 52536783259x20 - 45434427911x19 + 92226880868x18 - 71336683352x17 + 125874997329x16 - 89801104142x15 + 131144820279x14 - 89289000509x13 + 106600416700x12 - 67935846970x11 + 65774842016x10 - 38731708226x9 + 30551737937x8 - 15767508635x7 + 9878705051x6 - 4297296085x5 + 2147704850x4 - 731044046x3 + 251922248x2 - 47762400x + 8082649 \( -\,3^{21}\cdot 7^{28}\cdot 29^{36} \) $C_{42}$ (as 42T1) n/a
42.0.409216671487706896433400972530400813921910324685198934110144125610159603082437813389667.1 x42 - x41 + 20x40 - 25x39 - 8x38 - 138x37 - 2077x36 + 839x35 - 7305x34 + 8805x33 + 67596x32 - 12107x31 + 444232x30 - 141646x29 + 238560x28 + 2150502x27 - 3285732x26 + 14361861x25 - 708679x24 + 4004385x23 + 63920534x22 - 73366557x21 + 232544983x20 + 114300646x19 + 134380032x18 + 644451241x17 - 110366019x16 + 50739485x15 + 3000292231x14 - 3874326960x13 + 7531027885x12 - 11845394651x11 + 8115584321x10 - 10398559445x9 + 11442787794x8 - 3901741530x7 + 3575301015x6 - 3614499453x5 - 715331685x4 + 331663193x3 + 2507361126x2 - 1452650295x + 649728353 \( -\,7^{35}\cdot 29^{39} \) $C_{42}$ (as 42T1) n/a
42.42.776706980099412683270456983716625307007021218630434418395046564476510573119136503693312.1 x42 - 105x40 + 4977x38 - 140819x36 - 2x35 + 2650095x34 + 28x33 - 34991649x32 + 3416x31 + 333300632x30 - 147910x29 - 2319579309x28 + 2698850x27 + 11820066804x26 - 26976474x25 - 43812582639x24 + 153194076x23 + 116368453593x22 - 445815310x21 - 216225058245x20 + 272316800x19 + 271556250546x18 + 1986860386x17 - 220004406804x16 - 5445985720x15 + 108239023559x14 + 5365080098x13 - 29954210552x12 - 2176838734x11 + 4303639312x10 + 340937478x9 - 323375283x8 - 25471098x7 + 12576760x6 + 955878x5 - 232127x4 - 16898x3 + 1505x2 + 112x + 1 \( 2^{42}\cdot 3^{21}\cdot 7^{76} \) $C_{42}$ (as 42T1) n/a
42.42.874571799455406731006354153891279294008499270793470105314249037985839659586368645179677.1 x42 - 126x40 + 7371x38 - 265734x36 - 83x35 + 6608385x34 + 8715x33 - 120236886x32 - 418320x31 + 1656597096x30 + 12157425x29 - 17647825586x28 - 238834575x27 + 147151366404x26 + 3353237433x25 - 966133116900x24 - 34688663100x23 + 4999488494931x22 + 268659947305x21 - 20317109311296x20 - 1567171092690x19 + 64305659489211x18 + 6871145069880x17 - 156373597496214x16 - 22423210892208x15 + 286220369519701x14 + 53473028777910x13 - 382576512454206x12 - 90465142642875x11 + 356767740698292x10 + 103652112041415x9 - 215794576784304x8 - 74585905238228x7 + 74443140953685x6 + 29468446974645x5 - 11170399688028x4 - 4811855646528x3 + 319923920106x2 + 140495689782x - 11523307067 \( 7^{77}\cdot 11^{21} \) $C_{42}$ (as 42T1) n/a
42.0.1236405605609949863710440275882328463150065157474288679507165498832965910232619214817863.1 x42 + 6x40 - 4x39 - 207x38 - 72x37 - 857x36 + 225x35 + 13524x34 + 4498x33 + 47646x32 - 1779x31 - 319728x30 + 56511x29 - 873558x28 + 1268358x27 + 3182931x26 - 287550x25 + 12585242x24 - 25238916x23 + 37767705x22 + 35532417x21 + 14671665x20 + 387146580x19 - 33604015x18 + 83426931x17 + 893018691x16 - 978644267x15 + 2536898589x14 + 320653281x13 + 1627927205x12 + 1198131426x11 - 1595121042x10 - 2227675498x9 - 1701355491x8 - 2415610293x7 - 905477771x6 + 53305794x5 + 1490523864x4 + 2070850257x3 + 1799361396x2 + 662562267x + 198529417 \( -\,3^{63}\cdot 29^{39} \) $C_{42}$ (as 42T1) n/a
42.0.1614301355762283810837865300933983862308309471908336718662196745400668275448050914569211.1 x42 - 19x41 + 193x40 - 1368x39 + 7730x38 - 37504x37 + 163424x36 - 653089x35 + 2424227x34 - 8429227x33 + 27684879x32 - 86328882x31 + 256735509x30 - 730024655x29 + 1991090346x28 - 5216701163x27 + 13158377790x26 - 31970357867x25 + 74948907297x24 - 169511696295x23 + 370383530887x22 - 781186383780x21 + 1592472532020x20 - 3132457376500x19 + 5954059663605x18 - 10905928130092x17 + 19286342092183x16 - 32785066852903x15 + 53727191837034x14 - 84287557742257x13 + 127210697307990x12 - 182579457912758x11 + 251464793643596x10 - 325756069207898x9 + 403964380869043x8 - 462110196994188x7 + 505689982566923x6 - 491465579236069x5 + 459935510967285x4 - 350571727520514x3 + 266244504765895x2 - 126760076648507x + 70799148954451 \( -\,11^{21}\cdot 43^{40} \) $C_{42}$ (as 42T1) n/a
42.0.2333538056680443170216809877092138324063458978840788486681774071870758537049156298101507.1 x42 - 11x41 + 31x40 + 15x39 + 149x38 - 2171x37 + 5622x36 - 5813x35 + 17703x34 - 77949x33 + 215171x32 - 500434x31 + 1078714x30 - 3010069x29 + 7913255x28 - 11776682x27 + 16679313x26 - 87643658x25 + 355007978x24 - 761687128x23 + 908129906x22 - 907038305x21 + 2012009714x20 - 6104907919x19 + 18723809190x18 - 48743446573x17 + 87856746678x16 - 105007899193x15 + 97597592982x14 - 99989052476x13 + 101465465536x12 - 67260548547x11 + 47339909902x10 - 82545626769x9 + 101683114718x8 - 83757841269x7 + 103258810875x6 - 130872100909x5 + 93586325459x4 - 47886183228x3 + 41077962943x2 - 30874848118x + 9042834947 \( -\,7^{28}\cdot 43^{39} \) $C_{42}$ (as 42T1) n/a

Next

Download all search results for