Learn more about

Further refine search

Results (displaying matches 1-50 of 3588) Next

Label Polynomial Discriminant Galois group Class group
40.0.28789677222138897176527746894292024300433695316314697265625.1 x40 - x39 + x35 - x34 + x30 - x28 + x25 - x23 + x20 - x17 + x15 - x12 + x10 - x6 + x5 - x + 1 \( 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) $[10]$ (GRH)
40.0.29534212676193502024324377686070874915458261966705322265625.1 x40 - x35 + x25 - x20 + x15 - x5 + 1 \( 3^{20}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) $[11]$ (GRH)
40.0.118511797886229481159007653491590053243629014721874976833536.1 x40 + x38 - x34 - x32 + x28 + x26 - x22 - x20 - x18 + x14 + x12 - x8 - x6 + x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[11]$ (GRH)
40.0.9313225746154785156250000000000000000000000000000000000000000.1 x40 - x30 + x20 - x10 + 1 \( 2^{40}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) $[55]$ (GRH)
40.0.10279259898673041257519092860384627329993230987644195556640625.1 x40 - x39 - x38 + 4x37 - 4x36 - 4x35 + 17x34 - 17x33 - 17x32 + 72x31 - 72x30 + 127x29 + 106x28 - 504x27 + 491x26 + 496x25 - 2088x24 + 2091x23 + 2090x22 - 8856x21 + 8855x20 + 8856x19 + 2090x18 - 2091x17 - 2088x16 - 496x15 + 491x14 + 504x13 + 106x12 - 127x11 - 72x10 - 72x9 - 17x8 + 17x7 + 17x6 + 4x5 - 4x4 - 4x3 - x2 + x + 1 \( 3^{20}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22]$ (GRH)
40.0.37371137649685869661036271274571515833850102932794388078657536.1 x40 - x36 + x32 - x28 + x24 - x20 + x16 - x12 + x8 - x4 + 1 \( 2^{80}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[55]$ (GRH)
40.0.791717805254439023624865699561776475898803884688668051353443161.1 x40 - x39 + x38 - x37 + x36 - x35 + x34 - x33 + x32 - x31 + x30 - x29 + x28 - x27 + x26 - x25 + x24 - x23 + x22 - x21 + x20 - x19 + x18 - x17 + x16 - x15 + x14 - x13 + x12 - x11 + x10 - x9 + x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + 1 \( 41^{39} \) $C_{40}$ (as 40T1) $[11, 11]$ (GRH)
40.0.3241429490243539842962382172914969829546393600000000000000000000.1 x40 - 3x38 + 8x36 - 21x34 + 55x32 - 144x30 + 377x28 - 987x26 + 2584x24 - 6765x22 + 17711x20 - 6765x18 + 2584x16 - 987x14 + 377x12 - 144x10 + 55x8 - 21x6 + 8x4 - 3x2 + 1 \( 2^{40}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[62]$ (GRH)
40.0.6856321115222930027351949403366821000578180886805057525634765625.1 x40 - x39 - 4x38 + 7x37 - x36 - x35 + 43x34 - 99x33 - 80x32 + 377x31 + 182x30 - 676x29 + 119x28 - 544x27 - 3261x26 + 6247x25 + 11925x24 - 19250x23 - 3176x22 + 16639x21 - 17018x20 + 43346x19 + 2424x18 - 96822x17 + 39515x16 + 82301x15 + 12498x14 - 25677x13 - 3560x12 - 33345x11 - 17836x10 + 19768x9 + 19004x8 - 7029x7 + 393x6 + 406x5 - 125x4 + 46x3 - 3x2 - 3x + 1 \( 3^{20}\cdot 5^{30}\cdot 11^{32} \) $C_2\times C_{20}$ (as 40T2) $[55]$ (GRH)
40.0.8600477427850631837563790410386763343300628153464218251684553761.1 x40 - x39 + 2x38 - 5x37 + 5x36 - 10x35 + 17x34 - 17x33 + 34x32 - 45x31 + 45x30 - 23x29 + 22x28 + 45x27 - 157x26 + 250x25 - 585x24 + 969x23 - 1426x22 + 2565x21 - 3589x20 + 5130x19 - 5704x18 + 7752x17 - 9360x16 + 8000x15 - 10048x14 + 5760x13 + 5632x12 - 11776x11 + 46080x10 - 92160x9 + 139264x8 - 139264x7 + 278528x6 - 327680x5 + 327680x4 - 655360x3 + 524288x2 - 524288x + 1048576 \( 3^{20}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.11976663048684220554521970551011110940069807894780803482990048041.1 x40 - x + 1 \( 89\cdot 2963\cdot 2969\cdot 36703533640127\cdot 206798756592464370511\cdot 2015339302026829599091 \) $S_{40}$ (as 40T315842) Trivial (GRH)
40.2.12201853343608362939601549448988889059930192105219196517009951959.1 x40 - x - 1 \( -\,25788481\cdot 473151301296433975293137639591447400873676588598576105239 \) $S_{40}$ (as 40T315842) Trivial (GRH)
40.0.124268626980350964435787609267597531669991537741004775708201844736.1 x40 - 2x38 + 8x34 - 16x32 + 64x28 - 128x26 + 512x22 - 1024x20 + 2048x18 - 8192x14 + 16384x12 - 65536x8 + 131072x6 - 524288x2 + 1048576 \( 2^{60}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.124268626980350964435787609267597531669991537741004775708201844736.2 x40 + 2x38 - 8x34 - 16x32 + 64x28 + 128x26 - 512x22 - 1024x20 - 2048x18 + 8192x14 + 16384x12 - 65536x8 - 131072x6 + 524288x2 + 1048576 \( 2^{60}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.675866784901662726441095609131171073613586486317217350006103515625.1 x40 - 11x35 + 89x30 - 627x25 + 4049x20 - 20064x15 + 91136x10 - 360448x5 + 1048576 \( 5^{70}\cdot 7^{20} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.2162050738724101412398710020310959104000000000000000000000000000000.1 x40 - 9x38 + 53x36 - 260x34 + 1156x32 - 3971x30 + 11685x28 - 30590x26 + 70035x24 - 124361x22 + 193618x20 - 264514x18 + 292022x16 - 203056x14 + 128969x12 - 72116x10 + 29056x8 - 2353x6 + 190x4 - 15x2 + 1 \( 2^{40}\cdot 5^{30}\cdot 11^{32} \) $C_2\times C_{20}$ (as 40T2) $[155]$ (GRH)
40.0.2712047505327472012144594086234943329183650768987920496114727387136.1 x40 + 3x38 + 5x36 + 3x34 - 11x32 - 45x30 - 91x28 - 93x26 + 85x24 + 627x22 + 1541x20 + 2508x18 + 1360x16 - 5952x14 - 23296x12 - 46080x10 - 45056x8 + 49152x6 + 327680x4 + 786432x2 + 1048576 \( 2^{40}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.8900013646919506378267907122148784192909845412083315599549447274496.1 x40 - 25x36 + 441x32 - 3794x28 + 23626x24 - 66403x20 + 133864x16 - 62097x12 + 23622x8 - 155x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 5, 5]$ (GRH)
40.0.9765625000000000000000000000000000000000000000000000000000000000000.1 x40 - 32x30 + 1024x20 - 32768x10 + 1048576 \( 2^{60}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.9765625000000000000000000000000000000000000000000000000000000000000.2 x40 + 32x30 + 1024x20 + 32768x10 + 1048576 \( 2^{60}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.100383397447978918530459891214693626269465146363712847232818603515625.1 x40 - x39 + 11x38 - 11x37 + 77x36 - 76x35 + 439x34 - 429x33 + 2233x32 - 2167x31 + 9197x30 - 8833x29 + 32603x28 - 30778x27 + 102597x26 - 95699x25 + 285912x24 - 263693x23 + 659494x22 - 595562x21 + 1330759x20 - 1163338x19 + 2342802x18 - 1938861x17 + 3371093x16 - 2519131x15 + 3317622x14 - 1836384x13 + 2360500x12 - 558855x11 + 869342x10 - 264572x9 + 355025x8 - 154704x7 + 86679x6 - 26432x5 + 14707x4 - 1397x3 + 132x2 - 12x + 1 \( 3^{20}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) $[2, 4210]$ (GRH)
40.40.100383397447978918530459891214693626269465146363712847232818603515625.1 x40 - x39 - 39x38 + 39x37 + 702x36 - 701x35 - 7736x34 + 7701x33 + 58378x32 - 57817x31 - 319703x30 + 314247x29 + 1313873x28 - 1277913x27 - 4133168x26 + 3963256x25 + 10063407x24 - 9469608x23 - 19054236x22 + 17493203x21 + 28043254x20 - 24933608x19 - 31915288x18 + 27222459x17 + 27803858x16 - 22476466x15 - 18249278x14 + 13764066x13 + 8815690x12 - 6077890x11 - 3029168x10 + 1857788x9 + 703905x8 - 369684x7 - 102396x6 + 43393x5 + 8232x4 - 2512x3 - 288x2 + 48x + 1 \( 3^{20}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) Trivial (GRH)
40.0.100383397447978918530459891214693626269465146363712847232818603515625.2 x40 - x39 + 5x38 - 5x37 + 20x36 - 19x35 + 74x34 - 65x33 + 265x32 - 210x31 + 936x30 - 1475x29 + 4114x28 - 6060x27 + 15680x26 - 21989x25 + 56355x24 - 75531x23 + 197315x22 - 252030x21 + 682811x20 - 826140x19 + 1114445x18 - 1435731x17 + 1906140x16 - 2365144x15 + 3132335x14 - 3532620x13 + 4695244x12 - 3931240x11 + 5449401x10 + 1139235x9 + 238165x8 + 49790x7 + 10409x6 + 2176x5 + 455x4 + 95x3 + 20x2 + 4x + 1 \( 3^{20}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.100383397447978918530459891214693626269465146363712847232818603515625.3 x40 - x39 + 21x38 - 18x37 + 249x36 - 191x35 + 2008x34 - 1359x33 + 12160x32 - 7243x31 + 57502x30 - 29496x29 + 218159x28 - 94389x27 + 671689x26 - 234893x25 + 1690845x24 - 452550x23 + 3479454x22 - 637891x21 + 5838877x20 - 598784x19 + 7925819x18 - 188442x17 + 8602640x16 + 356201x15 + 7327393x14 + 688488x13 + 4739830x12 + 533615x11 + 2212864x10 + 232193x9 + 670719x8 + 9081x7 + 109203x6 - 5639x5 + 12525x4 - 994x3 + 252x2 + 12x + 1 \( 3^{20}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) $[2, 9262]$ (GRH)
40.0.235232623772795025272937433621472877556782506233347450351715087890625.1 x40 - x38 - 8x36 + 17x34 + 55x32 - 208x30 - 287x28 + 2159x26 + 424x24 - 19855x22 + 16039x20 - 178695x18 + 34344x16 + 1573911x14 - 1883007x12 - 12282192x10 + 29229255x8 + 81310473x6 - 344373768x4 - 387420489x2 + 3486784401 \( 5^{20}\cdot 7^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.771953130491261281023374345353486886213236398489600000000000000000000.1 x40 - 27x38 + 452x36 - 4707x34 + 35613x32 - 189939x30 + 758623x28 - 2202717x26 + 4873258x24 - 8161689x22 + 10602647x20 - 10506063x18 + 8018080x16 - 4542648x14 + 1926084x12 - 569703x10 + 122757x8 - 16992x6 + 1555x4 - 45x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{20}\cdot 11^{32} \) $C_2^2\times C_{10}$ (as 40T7) $[341]$ (GRH)
40.0.1298928410187363624572753906250000000000000000000000000000000000000000.1 x40 - 20x38 + 230x36 - 1800x34 + 10625x32 - 49003x30 + 181750x28 - 547185x26 + 1349050x24 - 2717025x22 + 4465008x20 - 5912800x18 + 6247290x16 - 5116175x14 + 3173350x12 - 1380878x10 + 400970x8 - 52915x6 + 4850x4 - 75x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{68} \) $C_2^2\times C_{10}$ (as 40T7) $[11, 55]$ (GRH)
40.0.2048466217933115502043842255668249817786415413279145255704960577548561.1 x40 - x39 - 3x38 + 10x37 - 10x36 - 30x35 + 127x34 - 127x33 - 381x32 + 1540x31 - 1540x30 + 5017x29 + 9192x28 - 47740x27 + 39883x26 + 133500x25 - 518980x24 + 534289x23 + 1583184x22 - 6478780x21 + 6419731x20 + 19436340x19 + 14248656x18 - 14425803x17 - 42037380x16 - 32440500x15 + 29074707x14 + 104407380x13 + 60308712x12 - 98749611x11 - 90935460x10 - 272806380x9 - 202479021x8 + 202479021x7 + 607437063x6 + 430467210x5 - 430467210x4 - 1291401630x3 - 1162261467x2 + 1162261467x + 3486784401 \( 3^{20}\cdot 11^{36}\cdot 13^{20} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.2806502314667513790456400791754773417894971971642777758942872517738496.1 x40 + 257x32 + 14016x24 + 105419x16 + 23219x8 + 1 \( 2^{120}\cdot 11^{32} \) $C_2\times C_{20}$ (as 40T2) $[2605]$ (GRH)
40.0.3398885169161610034374122849346487403986439215513600000000000000000000.1 x40 - 6x38 + 32x36 - 168x34 + 880x32 - 4608x30 + 24128x28 - 126336x26 + 661504x24 - 3463680x22 + 18136064x20 - 13854720x18 + 10584064x16 - 8085504x14 + 6176768x12 - 4718592x10 + 3604480x8 - 2752512x6 + 2097152x4 - 1572864x2 + 1048576 \( 2^{60}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.3398885169161610034374122849346487403986439215513600000000000000000000.2 x40 + 6x38 + 32x36 + 168x34 + 880x32 + 4608x30 + 24128x28 + 126336x26 + 661504x24 + 3463680x22 + 18136064x20 + 13854720x18 + 10584064x16 + 8085504x14 + 6176768x12 + 4718592x10 + 3604480x8 + 2752512x6 + 2097152x4 + 1572864x2 + 1048576 \( 2^{60}\cdot 5^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) n/a
40.0.5698414109730419226674323998106663768936641645268537104129791259765625.1 x40 - 31x35 + 718x30 - 14725x25 + 282001x20 - 3578175x15 + 42397182x10 - 444816117x5 + 3486784401 \( 5^{70}\cdot 11^{20} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.31654584865659568778929513407372752241664000000000000000000000000000000.1 x40 + 41x38 + 778x36 + 9065x34 + 72556x32 + 422839x30 + 1855505x28 + 6253910x26 + 16367625x24 + 33406879x22 + 53106978x20 + 65321146x18 + 61394717x16 + 43240794x14 + 22168369x12 + 7925719x10 + 1852081x8 + 255047x6 + 17190x4 + 360x2 + 1 \( 2^{40}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) $[2, 85622]$ (GRH)
40.40.31654584865659568778929513407372752241664000000000000000000000000000000.1 x40 - 39x38 + 702x36 - 7735x34 + 58344x32 - 319177x30 + 1308973x28 - 4102514x26 + 9927425x24 - 18613969x22 + 26988270x20 - 30037766x18 + 25334997x16 - 15882694x14 + 7199257x12 - 2269345x10 + 470613x8 - 59241x6 + 4018x4 - 120x2 + 1 \( 2^{40}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) Trivial (GRH)
40.0.31654584865659568778929513407372752241664000000000000000000000000000000.2 x40 + 11x38 + 77x36 + 440x34 + 2244x32 + 9273x30 + 33033x28 + 104786x26 + 294635x24 + 688611x22 + 1416910x20 + 2574154x18 + 3942422x16 + 4573316x14 + 4694437x12 + 4152720x10 + 2752508x8 + 863819x6 + 263538x4 + 73205x2 + 14641 \( 2^{40}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.31654584865659568778929513407372752241664000000000000000000000000000000.3 x40 + 5x38 + 20x36 + 75x34 + 275x32 + 1000x30 + 3625x28 + 13125x26 + 47500x24 + 171875x22 + 621875x20 + 859375x18 + 1187500x16 + 1640625x14 + 2265625x12 + 3125000x10 + 4296875x8 + 5859375x6 + 7812500x4 + 9765625x2 + 9765625 \( 2^{40}\cdot 5^{30}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.32473210254684090614318847656250000000000000000000000000000000000000000.1 x40 + 40x38 + 740x36 + 8400x34 + 65450x32 + 371009x30 + 1582270x28 + 5178645x26 + 13151125x24 + 26030250x22 + 40123776x20 + 47888645x18 + 43779420x16 + 30152050x14 + 15277900x12 + 5507149x10 + 1345115x8 + 206465x6 + 17450x4 + 600x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) $[237710]$ (GRH)
40.40.32473210254684090614318847656250000000000000000000000000000000000000000.1 x40 - 40x38 + 740x36 - 8400x34 + 65450x32 - 371007x30 + 1582210x28 - 5177835x26 + 13144625x24 - 25995750x22 + 39996264x20 - 47552155x18 + 43139880x16 - 29279950x14 + 14438100x12 - 4952883x10 + 1106455x8 - 144655x6 + 9150x4 - 200x2 + 1 \( 2^{40}\cdot 3^{20}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) Trivial (GRH)
40.0.32473210254684090614318847656250000000000000000000000000000000000000000.2 x40 + 20x38 + 230x36 + 1800x34 + 10625x32 + 49005x30 + 181750x28 + 546975x26 + 1346750x24 + 2703375x22 + 4412520x20 + 5771300x18 + 5985150x16 + 4782125x14 + 2915250x12 + 1285650x10 + 409750x8 + 82625x6 + 11250x4 + 625x2 + 25 \( 2^{40}\cdot 3^{20}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.32473210254684090614318847656250000000000000000000000000000000000000000.3 x40 + 243x30 + 59049x20 + 14348907x10 + 3486784401 \( 2^{40}\cdot 3^{20}\cdot 5^{70} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.40126953504928778716867347648517224229883090465646395672541598175985664.1 x40 - 4x38 + 14x36 - 48x34 + 164x32 - 560x30 + 1912x28 - 6528x26 + 22288x24 - 76096x22 + 259808x20 - 152192x18 + 89152x16 - 52224x14 + 30592x12 - 17920x10 + 10496x8 - 6144x6 + 3584x4 - 2048x2 + 1024 \( 2^{110}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) $[5731]$ (GRH)
40.0.40126953504928778716867347648517224229883090465646395672541598175985664.2 x40 + 4x38 + 14x36 + 48x34 + 164x32 + 560x30 + 1912x28 + 6528x26 + 22288x24 + 76096x22 + 259808x20 + 152192x18 + 89152x16 + 52224x14 + 30592x12 + 17920x10 + 10496x8 + 6144x6 + 3584x4 + 2048x2 + 1024 \( 2^{110}\cdot 11^{36} \) $C_2\times C_{20}$ (as 40T2) n/a
40.0.44558315129479113559462819921920000000000000000000000000000000000000000.1 x40 - 3x20 + 3 \( 2^{80}\cdot 3^{39}\cdot 5^{40} \) 40T523 n/a
40.0.67330470569637410331240297486633042732017118041235378120152501254022721.1 x40 - x39 + 20x38 - 17x37 + 226x36 - 172x35 + 1735x34 - 1174x33 + 9997x32 - 6058x31 + 44934x30 - 24189x29 + 161911x28 - 77302x27 + 472811x26 - 197858x25 + 1127150x24 - 410723x23 + 2190299x22 - 682496x21 + 3457565x20 - 911552x19 + 4383590x18 - 948272x17 + 4405640x16 - 773063x15 + 3426005x14 - 457001x13 + 2008708x12 - 207142x11 + 846197x10 - 53834x9 + 244002x8 - 13431x7 + 43098x6 - 33x5 + 4180x4 - 220x3 + 155x2 + 10x + 1 \( 3^{20}\cdot 41^{38} \) $C_2\times C_{20}$ (as 40T2) $[8, 8, 8, 136]$ (GRH)
40.0.80991088329663621512136783946706428882352994235065987550082919086927689.1 x40 - x39 - x38 + 7x37 - 12x36 - 3x35 + 58x34 - 121x33 + 29x32 + 454x31 - 1170x30 - 413x29 + 4482x28 - 9698x27 + 2592x26 + 35971x25 - 93393x24 + 60913x23 + 261981x22 - 865292x21 + 865161x20 + 1730608x19 + 1651223x18 + 944081x17 + 80422x16 - 555516x15 - 782673x14 - 616850x13 - 281134x12 + 50690x11 + 392197x10 + 232437x9 + 29331x8 - 123822x7 - 181683x6 - 150660x5 - 69255x4 + 15309x3 + 65610x2 + 78732x + 59049 \( 11^{36}\cdot 13^{30} \) $C_2\times C_{20}$ (as 40T2) $[1525]$ (GRH)
40.0.130305099804548492884220428175380349368393046678311823693003457545895936.1 x40 - 20x38 + 231x36 - 1812x34 + 10709x32 - 49280x30 + 181674x28 - 540148x26 + 1304886x24 - 2544812x22 + 3994121x20 - 4954644x18 + 4817692x16 - 3548680x14 + 1959963x12 - 753104x10 + 202622x8 - 30356x6 + 3025x4 - 60x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[22, 110]$ (GRH)
40.40.130305099804548492884220428175380349368393046678311823693003457545895936.1 x40 - 40x38 + 741x36 - 8436x34 + 66044x32 - 376960x30 + 1622694x28 - 5375528x26 + 13860054x24 - 27947920x22 + 44043506x20 - 53927016x18 + 50713585x16 - 35964944x14 + 18713229x12 - 6857500x10 + 1662386x8 - 240976x6 + 17560x4 - 480x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) Trivial (GRH)
40.0.130305099804548492884220428175380349368393046678311823693003457545895936.2 x40 - 4x38 + 15x36 - 56x34 + 209x32 - 780x30 + 2911x28 - 10864x26 + 40545x24 - 151316x22 + 564719x20 - 151316x18 + 40545x16 - 10864x14 + 2911x12 - 780x10 + 209x8 - 56x6 + 15x4 - 4x2 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[5, 10, 110]$ (GRH)
40.0.130305099804548492884220428175380349368393046678311823693003457545895936.3 x40 + 57x36 + 1280x32 + 14374x28 + 85046x24 + 259698x20 + 379157x16 + 222625x12 + 41990x8 + 820x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[110, 110]$ (GRH)
40.0.130305099804548492884220428175380349368393046678311823693003457545895936.4 x40 + 65x36 + 1728x32 + 24166x28 + 190246x24 + 834866x20 + 1881661x16 + 1748889x12 + 328758x8 + 12220x4 + 1 \( 2^{80}\cdot 3^{20}\cdot 11^{36} \) $C_2^2\times C_{10}$ (as 40T7) $[2, 6820]$ (GRH)

Next

Download all search results for