Learn more about

Further refine search

Results (displaying matches 1-50 of 57) Next

Label Polynomial Discriminant Galois group Class group
39.1.111519235660091198557729019736032936151076617850366100945341655.1 x39 - x - 1 \( -\,5\cdot 277\cdot 182969\cdot 824281\cdot 240883723\cdot 166682962769\cdot 13296842994412570838812157821 \) $S_{39}$ (as 39T306) Trivial (GRH)
39.1.113671059264051186521849878241745183709307592588026933074562263.1 x39 + x - 1 \( -\,2273\cdot 50009264964386795654135450172347199168195157319853468136631 \) $S_{39}$ (as 39T306) Trivial (GRH)
39.1.591488768481811428963044547642351525741394155127341131468704186081053911.1 x39 + 2x - 1 \( -\,15377\cdot 121075963\cdot 2526314190511031\cdot 125756254669634227064751087937702671316288931 \) $S_{39}$ (as 39T306) n/a
39.39.1287743804278744050410620426954739687963064854495168753870500853746064161.1 x39 - x38 - 38x37 + 37x36 + 666x35 - 630x34 - 7140x33 + 6545x32 + 52360x31 - 46376x30 - 278256x29 + 237336x28 + 1107568x27 - 906192x26 - 3365856x25 + 2629575x24 + 7888725x23 - 5852925x22 - 14307150x21 + 10015005x20 + 20030010x19 - 13123110x18 - 21474180x17 + 13037895x16 + 17383860x15 - 9657700x14 - 10400600x13 + 5200300x12 + 4457400x11 - 1961256x10 - 1307504x9 + 490314x8 + 245157x7 - 74613x6 - 26334x5 + 5985x4 + 1330x3 - 190x2 - 20x + 1 \( 79^{38} \) $C_{39}$ (as 39T1) Trivial (GRH)
39.1.29766940929686730469453404466315757751925974444091458872611472369770299392.1 x39 - 4x - 4 \( -\,2^{38}\cdot 7\cdot 379\cdot 21067\cdot 725149\cdot 2449913\cdot 4899001\cdot 8078297\cdot 27558093317186226614976151637 \) $S_{39}$ (as 39T306) n/a
39.1.30358429698055946750954377821418319828678479539288607898860980038841401344.1 x39 - 2x - 2 \( -\,2^{38}\cdot 109\cdot 733\cdot 2281571\cdot 39359244317586317715611\cdot 15393176755842820625535054943 \) $S_{39}$ (as 39T306) n/a
39.1.30949918466424087120653371182538821476178128510706641437741657291847892992.1 x39 - x - 2 \( -\,2^{39}\cdot 6984751662407\cdot 51339275011007\cdot 156996140889988820454187313273455591 \) $S_{39}$ (as 39T306) n/a
39.1.30949918466425163032455347262376548002357192825523150128829529791279710855.1 x39 - x - 4 \( -\,5\cdot 7\cdot 41\cdot 659\cdot 2251\cdot 31793\cdot 2678539\cdot 118932731307271627\cdot 1435541730552723797020749364164204653 \) $S_{39}$ (as 39T306) n/a
39.1.30949918466425163032455351176520881905430984634485756925110487707912503296.1 x39 - 2 \( -\,2^{38}\cdot 3^{39}\cdot 13^{39} \) 39T23 n/a
39.1.31541407234794379313956324531623443982183489729682905951359995376983605248.1 x39 + 2x - 2 \( -\,2^{38}\cdot 248461\cdot 12252886339\cdot 405761380291\cdot 92891053318731020670026583775103003 \) $S_{39}$ (as 39T306) n/a
39.1.5184532600841803944263915674895587210566658055846276632709425783895556943647.1 x39 + 3x - 1 \( -\,3^{39}\cdot 14058971690735203\cdot 72182134610038326703\cdot 1260658330770821965649 \) $S_{39}$ (as 39T306) n/a
39.3.4360191917307956891935658158444803764507661447188598787724416645863129369703209.1 x39 - 3x - 1 \( 3^{40}\cdot 113\cdot 28201\cdot 37423\cdot 9699563\cdot 158105977\cdot 1960981103314503221804260659585541 \) $S_{39}$ (as 39T306) n/a
39.1.4360222867226423429693838075867172825179015867062293203673446975547354292158464.1 x39 + 3x - 2 \( -\,2^{39}\cdot 3^{39}\cdot 11\cdot 17\cdot 10465700849318807861983225793753454091541088157 \) $S_{39}$ (as 39T306) n/a
39.1.147739156433474749315843702498682821120110181270784796708171654921655559297397183.1 x39 - 3x - 3 \( -\,3^{39}\cdot 43\cdot 389\cdot 7503689519\cdot 5584497575731\cdot 52010336227194448203036429672690983 \) $S_{39}$ (as 39T306) n/a
39.1.152099348350782706320374508119198817424407291706862455426088176786715205677052351.1 x39 - 3 \( -\,3^{77}\cdot 13^{39} \) 39T23 n/a
39.1.152099348350782706321450419921178811406467720959718579205203664155545621741662655.1 x39 + x - 3 \( -\,5\cdot 378559\cdot 2269473744073\cdot 35407772863339269610949345166405887211353254003387332772693733 \) $S_{39}$ (as 39T306) n/a
39.1.156459540268090663324905313739714813728704402142940114144004698651774852056707519.1 x39 + 3x - 3 \( -\,3^{39}\cdot 7\cdot 1570897\cdot 3510971995405936089410206754104651560391127681333166283 \) $S_{39}$ (as 39T306) n/a
39.39.27027636582498189040621249864144468324898507852136260989871841246090732111847218889.1 x39 - 78x37 + 2691x35 - 26x34 - 54301x33 + 1573x32 + 714415x31 - 41041x30 - 6470152x29 + 608296x28 + 41530255x27 - 5687020x26 - 191726951x25 + 35251762x24 + 639669732x23 - 148392244x22 - 1537691324x21 + 427950341x20 + 2636840661x19 - 844358905x18 - 3171548939x17 + 1129454313x16 + 2610137920x15 - 1007230666x14 - 1417531106x13 + 581665721x12 + 480801555x11 - 206676184x10 - 93363413x9 + 41256709x8 + 9129731x7 - 3966105x6 - 427921x5 + 161980x4 + 7137x3 - 1833x2 + 78x - 1 \( 13^{74} \) $C_{39}$ (as 39T1) Trivial (GRH)
39.39.278090908914452863097910228358710837623601476936566848265511419948413237663013645849.1 x39 - x38 - 76x37 + 71x36 + 2556x35 - 2222x34 - 50313x33 + 40520x32 + 646279x31 - 479776x30 - 5720417x29 + 3892342x28 + 35931891x27 - 22265255x26 - 162617513x25 + 91086546x24 + 533275855x23 - 267613697x22 - 1265136580x21 + 562372122x20 + 2154121978x19 - 835520674x18 - 2594978102x17 + 861831376x16 + 2164301236x15 - 603623323x14 - 1211061590x13 + 280758113x12 + 434291871x11 - 84841877x10 - 93357668x9 + 15992102x8 + 10935603x7 - 1639529x6 - 599706x5 + 67036x4 + 11826x3 - 272x2 - 49x - 1 \( 157^{38} \) $C_{39}$ (as 39T1) Trivial (GRH)
39.3.325174389229479288854843362066155701042596080647544598108539007844370930854873006080.1 x39 - 4x - 2 \( 2^{38}\cdot 5\cdot 307\cdot 2957\cdot 227299\cdot 2015359939\cdot 126713808485393773489\cdot 4489962387285740477847287937259 \) $S_{39}$ (as 39T306) n/a
39.1.325326488608779990027588899606730251036541369844682445198450852946268133768462561727.1 x39 + 4x - 3 \( -\,11\cdot 383\cdot 258901833901\cdot 46102253730493\cdot 6469499493992647369095124715187091139195245766876020603 \) $S_{39}$ (as 39T306) n/a
39.39.1112962024555065990379787974028986797706599025588599389261176471461970163669515376929.1 x39 - 10x38 - 55x37 + 838x36 + 433x35 - 29490x34 + 36492x33 + 574075x32 - 1308560x31 - 6805710x30 + 21722262x29 + 50319569x28 - 220059875x27 - 219014481x26 + 1482194078x25 + 368114118x24 - 6887826619x23 + 1579984745x22 + 22412813436x21 - 12656284391x20 - 51075711901x19 + 41988060380x18 + 80500790810x17 - 83924117638x16 - 85491405725x15 + 107935481554x14 + 58560262932x13 - 89832821948x12 - 24031853409x11 + 47511398377x10 + 5015492400x9 - 15459668136x8 - 163687701x7 + 2936606920x6 - 133518320x5 - 294156298x4 + 23663051x3 + 11997840x2 - 1233420x - 17513 \( 7^{26}\cdot 53^{36} \) $C_{39}$ (as 39T1) Trivial (GRH)
39.1.2126862202034452915901730414063261730179692260123929310064681767016944856455727546368.1 x39 - 2x - 4 \( -\,2^{74}\cdot 7\cdot 587\cdot 18500401851230653445409506417\cdot 1481161349950452069806304520009 \) $S_{39}$ (as 39T306) n/a
39.1.2126862202034748660285915022204012216857243541162305562612280341530069610290263097344.1 x39 + 2x - 4 \( -\,2^{74}\cdot 67\cdot 127\cdot 1705859\cdot 46716239\cdot 166046661282933582784622192068215692727450449 \) $S_{39}$ (as 39T306) n/a
39.1.8507444447946485844418286341728927378077567305462033667695206300572163873845601632256.1 x39 - 3x - 4 \( -\,2^{38}\cdot 3^{40}\cdot 2545710992654683535902750385463210805291971108293154349 \) $S_{39}$ (as 39T306) n/a
39.1.8507448808138403152375291948446349874067853663001722601477703332581397763908045897728.1 x39 + x - 4 \( -\,2^{38}\cdot 11\cdot 2813628951493196639314123190060474164409525131222578520126495056776845067 \) $S_{39}$ (as 39T306) n/a
39.1.40113869709381128552180746821850510752089597302511683056027631106471306712928407781376.1 x39 + 5x - 4 \( -\,2^{38}\cdot 7\cdot 68315637157987\cdot 305166292278799543829975774982369331856821036434790372619681 \) $S_{39}$ (as 39T306) n/a
39.39.766013724834244650294524354961642632236263716231977842808077352289863965488994713581761.1 x39 - 3x38 - 108x37 + 298x36 + 5118x35 - 12960x34 - 141273x33 + 327258x32 + 2542896x31 - 5364720x30 - 31665816x29 + 60457005x28 + 282448421x27 - 483720000x26 - 1843142403x25 + 2798088433x24 + 8906870079x23 - 11806339326x22 - 32037019809x21 + 36413436990x20 + 85660814031x19 - 81805437661x18 - 168975543573x17 + 132746230803x16 + 242513964655x15 - 153550437819x14 - 248180206443x13 + 124178901378x12 + 176350634529x11 - 68071818495x10 - 84005722509x9 + 23987475126x8 + 25531114500x7 - 4940743725x6 - 4581690405x5 + 488059458x4 + 422630171x3 - 11643372x2 - 14496000x - 430019 \( 3^{52}\cdot 53^{36} \) $C_{39}$ (as 39T1) Trivial (GRH)
39.3.1957072166951536895904481190802993016887123856431051011110940069807894780803482990048041.1 x39 - 5x - 1 \( 7927\cdot 100829867\cdot 421590019\cdot 318322193083061\cdot 332220892743431\cdot 54919251341659036283763722464180590181 \) $S_{39}$ (as 39T306) n/a
39.1.4551319558799813191937857662952947174343134462233413202747696872159030254011873008112727.1 x39 + 3x - 5 \( -\,3^{37}\cdot 151\cdot 2609\cdot 99918475519\cdot 325937638315547\cdot 787806508996424549807457661706822615567 \) $S_{39}$ (as 39T306) n/a
39.1.39004803857886589914228280658647578469613897459583108388651613131514750421047210693359375.1 x39 - 5x - 5 \( -\,5^{38}\cdot 818093\cdot 1607563\cdot 82561960451\cdot 987432138341051629144601850338133733171 \) $S_{39}$ (as 39T306) n/a
39.1.40961876020477934892824804957514913328056217551506497952573954413598228555987564313704207.1 x39 - 3x - 5 \( -\,3^{40}\cdot 101\cdot 2063\cdot 3701\cdot 268997\cdot 2960047\cdot 5487113197832234029051190326614909234836995144171 \) $S_{39}$ (as 39T306) n/a
39.1.40961876024838126218643993592829437447598858753241531636146517934365724171539541622257423.1 x39 - 2x - 5 \( -\,23\cdot 139\cdot 18119\cdot 1044213497\cdot 677194894382274307014809509780229502720468505732082805656194530298448213 \) $S_{39}$ (as 39T306) n/a
39.1.40961876024838126810132761962045718948572213855803608388651613131514750421047210693359375.1 x39 - 5 \( -\,3^{39}\cdot 5^{38}\cdot 13^{39} \) 39T23 n/a
39.1.40961876024838127401621530331262000449545568958365685141156708328663776670554879764461327.1 x39 + 2x - 5 \( -\,229\cdot 1987\cdot 142963\cdot 1366812637\cdot 810114948493\cdot 156226602792479\cdot 2528280980108249089\cdot 1439749307724964790152813 \) $S_{39}$ (as 39T306) n/a
39.1.42918948191789663706037243265443859427530530252024108388651613131514750421047210693359375.1 x39 + 5x - 5 \( -\,5^{38}\cdot 11\cdot 18424603\cdot 298789856935478924630711\cdot 1948194133336354989156327267833 \) $S_{39}$ (as 39T306) n/a
39.39.1936976388815002056414006672269137141115870891516619249549365912749776792871342052263284529.1 x39 - 10x38 - 91x37 + 1036x36 + 3946x35 - 48394x34 - 113775x33 + 1340155x32 + 2502275x31 - 24308912x30 - 43149237x29 + 301161228x28 + 566666743x27 - 2578642861x26 - 5471311188x25 + 15078823676x24 + 37876474410x23 - 57546616634x22 - 184436616929x21 + 124709319279x20 + 618742359228x19 - 54324200102x18 - 1388110537758x17 - 483581361681x16 + 1979142956060x15 + 1427263115288x14 - 1609144180429x13 - 1887910006886x12 + 509773426670x11 + 1295640832119x10 + 171082251210x9 - 429221222404x8 - 160917420416x7 + 56100044133x6 + 37303198473x5 - 296394467x4 - 3173168574x3 - 345469686x2 + 87223662x + 14066053 \( 7^{26}\cdot 79^{36} \) $C_{39}$ (as 39T1) n/a
39.39.10875731209963950183668965028172966310448843982174863722806229308537531743799916727046706489.1 x39 - 10x38 - 81x37 + 1050x36 + 2269x35 - 47944x34 - 10490x33 + 1262097x32 - 921080x31 - 21400660x30 + 27475516x29 + 247428139x28 - 406156179x27 - 2015287011x26 + 3799253180x25 + 11792160578x24 - 24197312569x23 - 50158998143x22 + 108120625100x21 + 156174553989x20 - 342706955337x19 - 357124870516x18 + 769896542138x17 + 599267077900x16 - 1212025785075x15 - 732019943274x14 + 1306427105242x13 + 636966693014x12 - 927524873227x11 - 377238926259x10 + 408532943088x9 + 139924561470x8 - 102630494231x7 - 28423351128x6 + 13445073140x5 + 2704930022x4 - 804059407x3 - 106744516x2 + 15239414x + 1788197 \( 13^{26}\cdot 53^{36} \) $C_{39}$ (as 39T1) n/a
39.39.1333154650182543026449283712690240384443280847870204673583412479894814975705256486667290110161.1 x39 - 3x38 - 144x37 + 544x36 + 8607x35 - 39873x34 - 273219x33 + 1586748x32 + 4768863x31 - 38339003x30 - 36770526x29 + 590401068x28 - 186548878x27 - 5865182265x26 + 7401235119x25 + 36650142262x24 - 80182575711x23 - 129404499477x22 + 478911168431x21 + 133680753126x20 - 1717086418740x19 + 841783459401x18 + 3624110595294x17 - 4051561096485x16 - 3908165428785x15 + 8158071470571x14 + 524362618785x13 - 8608241123601x12 + 3464219056332x11 + 4466815249788x10 - 3609335878022x9 - 703907774076x8 + 1408564281330x7 - 178984846489x6 - 212099031525x5 + 49542152886x4 + 13836139901x3 - 2992803492x2 - 474072537x + 17616187 \( 3^{52}\cdot 79^{36} \) $C_{39}$ (as 39T1) n/a
39.39.12088669642594427834079815641631684897704150233955220736437592661471356964310045748175158745489.1 x39 - x38 - 196x37 + 37x36 + 17177x35 + 9403x34 - 882381x33 - 1067223x32 + 29336001x31 + 53273410x30 - 658772565x29 - 1583577890x28 + 10123695780x27 + 30773254905x26 - 105181421187x25 - 406462457224x24 + 701275142050x23 + 3703719049533x22 - 2495293357664x21 - 23296951876563x20 - 582451600575x19 + 100148494787668x18 + 52233018535617x17 - 288162921569191x16 - 262264312267859x15 + 535079835460586x14 + 679366178486570x13 - 600819998721797x12 - 1028790083129260x11 + 359936453258218x10 + 916306649955834x9 - 86249482058917x8 - 469190872234743x7 + 4041363119341x6 + 135236928048853x5 - 4445757797975x4 - 19527462450618x3 + 2244998319481x2 + 789598736860x - 116423735903 \( 7^{26}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.12088669642594427834079815641631684897704150233955220736437592661471356964310045748175158745489.2 x39 - x38 - 196x37 + 37x36 + 17177x35 + 9403x34 - 882381x33 - 1067223x32 + 29336001x31 + 53273410x30 - 658679661x29 - 1582974014x28 + 10115860876x27 + 30713447955x26 - 104944361700x25 - 404054826285x24 + 698746620334x23 + 3652383956122x22 - 2514455451909x21 - 22664595762180x20 + 201147288071x19 + 95542005646477x18 + 43535191283083x17 - 268603953306336x16 - 212548013703570x15 + 489275966728363x14 + 517783387282365x13 - 549595953418310x12 - 723715965685304x11 + 343123809068303x10 + 580854022082499x9 - 85745300820944x8 - 252040837202603x7 - 10510715956375x6 + 52566975147352x5 + 6905591385122x4 - 5057933882725x3 - 892913278781x2 + 181524069429x + 36571406327 \( 7^{26}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.67714991262885724764382982352806307530105400259949891343634847772804609517807540244019550464529.1 x39 - x38 - 152x37 + 131x36 + 10058x35 - 7664x34 - 385412x33 + 259301x32 + 9584688x31 - 5543314x30 - 164185853x29 + 77293037x28 + 2005287415x27 - 697581260x26 - 17813421285x25 + 3767883715x24 + 116209225455x23 - 7694298355x22 - 557397698695x21 - 45743080985x20 + 1952302482609x19 + 442964945371x18 - 4917326782303x17 - 1782021019971x16 + 8684112089102x15 + 4202789024049x14 - 10349426133993x13 - 6090366989496x12 + 7867872784032x11 + 5300624795924x10 - 3522617600307x9 - 2593891521982x8 + 842025983515x7 + 645145821500x6 - 97379198250x5 - 71168573750x4 + 4180068750x3 + 2855312500x2 - 13984375x - 9765625 \( 313^{38} \) $C_{39}$ (as 39T1) $[7]$ (GRH)
39.39.8320218171789251028069979650899790239310515771557947367834077287023540263376505733290557577514801.1 x39 - 237x37 - 158x36 + 24885x35 + 31758x34 - 1521777x33 - 2797074x32 + 59981382x31 + 142319290x30 - 1593020385x29 - 4645069176x28 + 28911926408x27 + 102131256564x26 - 354430642254x25 - 1546711782640x24 + 2789344797921x23 + 16230796918608x22 - 11865055676615x21 - 117384643087056x20 + 1203314824617x19 + 577307993368452x18 + 284377372208856x17 - 1897069485800418x16 - 1634584478920060x15 + 4091661940360473x14 + 4742867841110748x13 - 5697404621999031x12 - 8186462453659176x11 + 5033143416507438x10 + 8729302726558491x9 - 2808785515834836x8 - 5719188124989093x7 + 1072119182609331x6 + 2216792963213496x5 - 346349054137671x4 - 464961302461611x3 + 86786523385245x2 + 39491507056968x - 9364853836691 \( 3^{52}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.8320218171789251028069979650899790239310515771557947367834077287023540263376505733290557577514801.2 x39 - 237x37 - 158x36 + 24885x35 + 31758x34 - 1521777x33 - 2797074x32 + 59981382x31 + 142319290x30 - 1593173961x29 - 4645709076x28 + 28932877445x27 + 102241716102x26 - 355443646614x25 - 1553454595933x24 + 2810177785458x23 + 16432247086167x22 - 11967377146298x21 - 120635759398347x20 - 1823113254630x19 + 605746157617644x18 + 341698986985275x17 - 2017784741258409x16 - 2057859861184228x15 + 4196664129873231x14 + 6285983642002179x13 - 4725650025499719x12 - 10914822027031086x11 + 1465701883750416x10 + 10558980638642454x9 + 2159465693586741x8 - 5293388896015467x7 - 2202937031211426x6 + 1157156267855625x5 + 698944716032751x4 - 59632171643934x3 - 73740757923315x2 - 5146532589771x + 1075512295747 \( 3^{52}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.18927900593212290278037469352150105186673660971663667045096692101161408140762563765836642973478089.1 x39 - 10x38 - 117x37 + 1248x36 + 6574x35 - 70508x34 - 238767x33 + 2376429x32 + 6246879x31 - 53084512x30 - 122075225x29 + 827367236x28 + 1790293625x27 - 9246368917x26 - 19595581406x25 + 75169877668x24 + 158901467338x23 - 447662704038x22 - 947228275523x21 + 1958725720367x20 + 4113180518714x19 - 6305779770878x18 - 12855958984538x17 + 14959051199327x16 + 28441505512102x15 - 26161675308530x14 - 43445251987869x13 + 33478011120120x12 + 44089907326138x11 - 30444285645115x10 - 27975777878380x9 + 18404264085338x8 + 10144928480062x7 - 6624071325699x6 - 1906724813303x5 + 1267027871999x4 + 154439956714x3 - 106661114208x2 - 3009281044x + 2198272487 \( 13^{26}\cdot 79^{36} \) $C_{39}$ (as 39T1) n/a
39.39.156428429087384921728870222525148611738414909735182186340401656558510812088760819892280320561915969.1 x39 - 10x38 - 163x37 + 1930x36 + 10036x35 - 159252x34 - 244026x33 + 7427095x32 - 2389017x31 - 217511108x30 + 326735317x29 + 4189088926x28 - 10153118781x27 - 53678089242x26 + 179337849315x25 + 446153115950x24 - 2052054489049x23 - 2151039397974x22 + 15813321949956x21 + 2821647348255x20 - 82489984035674x19 + 33701919033939x18 + 286106777644803x17 - 243663734729882x16 - 630941672277082x15 + 788875500248585x14 + 805762979991898x13 - 1416423805872644x12 - 462194605752742x11 + 1418910665071105x10 - 50123800376408x9 - 755859394498746x8 + 182503268720113x7 + 191800233365760x6 - 72017807491341x5 - 18496135085754x4 + 9851455470329x3 + 124863566729x2 - 388373575025x + 27293535527 \( 7^{26}\cdot 131^{36} \) $C_{39}$ (as 39T1) n/a
39.39.118129027602237903625231846226768806470030318124152946028448455403348348206499160462586488797476753449.1 x39 - x38 - 354x37 + 511x36 + 56045x35 - 103251x34 - 5247131x33 + 11548919x32 + 323858271x31 - 818077472x30 - 13915010959x29 + 39315623658x28 + 428683737326x27 - 1332897877353x26 - 9615971778232x25 + 32610615529383x24 + 157954520735238x23 - 583064031850378x22 - 1895313576585435x21 + 7659727015753552x20 + 16422194396956823x19 - 73899082723108593x18 - 100210603740569843x17 + 520414495467180616x16 + 408676600606594002x15 - 2642936340868695765x14 - 971974365656650043x13 + 9496075566431610394x12 + 586468002053107902x11 - 23471590571480299925x10 + 3789203055222994557x9 + 38292325977191105354x8 - 12389487729343041691x7 - 38551672930076472707x6 + 17045767379408771012x5 + 21043564296778861782x4 - 11248804489468062285x3 - 4368569542269920485x2 + 2837239422181036677x - 221647485396299581 \( 13^{26}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.118129027602237903625231846226768806470030318124152946028448455403348348206499160462586488797476753449.2 x39 - x38 - 354x37 + 511x36 + 56045x35 - 103251x34 - 5247131x33 + 11548919x32 + 323858271x31 - 818077472x30 - 13912915879x29 + 39305918508x28 + 428252335706x27 - 1330679343737x26 - 9579637340859x25 + 32404331102658x24 + 156314779697940x23 - 572661461636511x22 - 1851957964341868x21 + 7341898588148461x20 + 15740944592310945x19 - 67699689278718824x18 - 94298948980717131x17 + 441371170652289465x16 + 391057744594350035x15 - 1980375180524138330x14 - 1121115212503618422x13 + 5873379572582775725x12 + 2334047970653280778x11 - 10818653588566378140x10 - 3849139231012138630x9 + 11165439791508447499x8 + 4690051537532888413x7 - 5357278100940296591x6 - 2992545959704021257x5 + 706803441870504299x4 + 694897163472669662x3 + 124066763635805181x2 + 4291829198615412x - 176560760826029 \( 13^{26}\cdot 79^{38} \) $C_{39}$ (as 39T1) n/a
39.39.1501310100540182816122902385277086845494955654696971364374430555896401217548869308777432830007194746769.1 x39 - 13x38 - 182x37 + 2730x36 + 14677x35 - 259233x34 - 697762x33 + 14757002x32 + 22070763x31 - 562769506x30 - 502430448x29 + 15217824882x28 + 8836227920x27 - 301252971368x26 - 128531515099x25 + 4444891875554x24 + 1611389606593x23 - 49312156872550x22 - 17208326212714x21 + 412126532724114x20 + 148945309469346x19 - 2584439781741701x18 - 990752940639891x17 + 12045290627585839x16 + 4853248692356259x15 - 41087556662763260x14 - 16875632381268701x13 + 100344648053329030x12 + 39971524926664279x11 - 170232014288977485x10 - 60718951748161707x9 + 192451677172291043x8 + 52833922982995011x7 - 136584375299797074x6 - 19036514040517506x5 + 55032005931718101x4 - 2939818026931279x3 - 9750856549065099x2 + 2629380133737812x - 141031288821697 \( 7^{26}\cdot 13^{72} \) $C_{39}$ (as 39T1) n/a
39.39.110539730308983252644692019573737637228828219789892386533857010792412648335681998371651796263456819412889.1 x39 - x38 - 266x37 + 201x36 + 30249x35 - 20577x34 - 1955719x33 + 1451515x32 + 80733464x31 - 73319589x30 - 2263189338x29 + 2590988751x28 + 44569388886x27 - 63687593067x26 - 626428894665x25 + 1097818462656x24 + 6291493806807x23 - 13394812097448x22 - 44496937680997x21 + 116206956876955x20 + 212799596796731x19 - 715024587078660x18 - 615613322642382x17 + 3085798869034590x16 + 605869572443830x15 - 9130534820399395x14 + 2644115229153457x13 + 17760841353343332x12 - 12225754395203670x11 - 20865350159842410x10 + 23224133468755773x9 + 11651476867778808x8 - 23071484201964822x7 + 1000224610088400x6 + 11129065111375902x5 - 4226325744669057x4 - 1602614683727208x3 + 1322681130702459x2 - 264907416527640x + 15539564953953 \( 547^{38} \) $C_{39}$ (as 39T1) $[2, 2]$ (GRH)

Next

Download all search results for