Learn more about

Further refine search

Results (displaying matches 1-50 of 4058) Next

Label Polynomial Discriminant Galois group Class group
36.0.1310656710125779295611091389185381649163216325999081.1 x36 - x33 + x27 - x24 + x18 - x12 + x9 - x3 + 1 \( 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[7]$ (GRH)
36.0.11636034958735032166924075841251447518799351583251569.1 x36 - x35 + x33 - x32 + x30 - x29 + x27 - x26 + x24 - x23 + x21 - x20 + x18 - x16 + x15 - x13 + x12 - x10 + x9 - x7 + x6 - x4 + x3 - x + 1 \( 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[9]$ (GRH)
36.0.599781089369859106058502013153430001897393515831230464.1 x36 - x18 + 1 \( 2^{36}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) $[19]$ (GRH)
36.0.2063964752380648518006363619171361060603216996551622656.1 x36 - x34 + x32 - x30 + x28 - x26 + x24 - x22 + x20 - x18 + x16 - x14 + x12 - x10 + x8 - x6 + x4 - x2 + 1 \( 2^{36}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[19]$ (GRH)
36.0.7710105884424969623139759010953858981831553019262380893.1 x36 - x35 + x34 - x33 + x32 - x31 + x30 - x29 + x28 - x27 + x26 - x25 + x24 - x23 + x22 - x21 + x20 - x19 + x18 - x17 + x16 - x15 + x14 - x13 + x12 - x11 + x10 - x9 + x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + 1 \( 37^{35} \) $C_{36}$ (as 36T1) $[37]$ (GRH)
36.0.33294538757658815101209249418169888839879795074462890625.1 x36 - 76x27 + 5777x18 + 76x9 + 1 \( 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) $[37]$ (GRH)
36.0.105284851424362376111761689319042885392000913033423744261.1 x36 - x + 1 \( 31\cdot 43\cdot 12231367\cdot 6457445387287894797679050738460435100440856551 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.107489866423070673503665262185869902088334798226294838011.1 x36 - x - 1 \( -\,17\cdot 4159\cdot 15199\cdot 100026406411403650496448740544371871003696683563 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.0.114573059505387793044837364496233492772337802886962890625.1 x36 - x35 + 2x34 - 3x33 + 5x32 - 8x31 + 13x30 - 21x29 + 34x28 - 55x27 + 89x26 - 144x25 + 233x24 - 377x23 + 610x22 - 987x21 + 1597x20 - 2584x19 + 4181x18 + 2584x17 + 1597x16 + 987x15 + 610x14 + 377x13 + 233x12 + 144x11 + 89x10 + 55x9 + 34x8 + 21x7 + 13x6 + 8x5 + 5x4 + 3x3 + 2x2 + x + 1 \( 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[76]$ (GRH)
36.0.765562336274603149526276140236591524202950795854016937984.1 x36 - 38x30 + 1315x24 - 4900x18 + 16603x12 - 129x6 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[2, 14]$ (GRH)
36.0.1102766555593920971763188134004988790509406708671598011853.1 x36 - x35 + 3x34 - 4x33 + 9x32 - 14x31 + 28x30 - 47x29 + 89x28 - 155x27 + 286x26 - 507x25 + 924x24 + 442x23 + 899x22 + 909x21 + 1331x20 + 1386x19 + 2185x18 + 1918x17 + 3838x16 + 2183x15 + 7411x14 + 793x13 + 16212x12 - 7215x11 + 3211x10 - 1429x9 + 636x8 - 283x7 + 126x6 - 56x5 + 25x4 - 11x3 + 5x2 - 2x + 1 \( 7^{24}\cdot 13^{33} \) $C_3\times C_{12}$ (as 36T3) $[2, 74]$ (GRH)
36.0.14212734556341031905549296191351828189377245025195450200601.1 x36 - 5x27 - 487x18 - 2560x9 + 262144 \( 3^{90}\cdot 7^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.42497246625894555234552515412349089862939543796539306640625.1 x36 - 16x33 + 470x30 + 3624x27 + 44003x24 + 27532x21 + 50596x18 - 38116x15 + 32635x12 - 8692x9 + 2129x6 + 44x3 + 1 \( 3^{54}\cdot 5^{18}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[2, 74]$ (GRH)
36.0.48908816365067043970916287981601635325839249495639564072729.1 x36 - x35 - x34 + 3x33 - x32 - 5x31 + 7x30 + 3x29 - 17x28 + 11x27 + 23x26 - 45x25 - x24 + 91x23 - 89x22 - 93x21 + 271x20 - 85x19 - 457x18 - 170x17 + 1084x16 - 744x15 - 1424x14 + 2912x13 - 64x12 - 5760x11 + 5888x10 + 5632x9 - 17408x8 + 6144x7 + 28672x6 - 40960x5 - 16384x4 + 98304x3 - 65536x2 - 131072x + 262144 \( 7^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[2, 74]$ (GRH)
36.0.59052973372357400276270969857784672833245876134958959716201.1 x36 - x35 + 6x34 - 7x33 + 27x32 - 35x31 + 110x30 - 90x29 + 365x28 - 253x27 + 1190x26 - 820x25 + 3948x24 - 2955x23 + 8389x22 - 6275x21 + 16362x20 - 9115x19 + 28304x18 + 1097x17 + 33005x16 + 594x15 + 42702x14 - 8321x13 + 51190x12 - 23469x11 + 21146x10 - 11317x9 + 10292x8 - 3370x7 + 4283x6 + 1030x5 + 250x4 + 59x3 + 15x2 + 3x + 1 \( 7^{30}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 182]$ (GRH)
36.0.123549579287202724195633555037990063416945072951206088802304.1 x36 - 6x34 + 27x32 - 109x30 + 417x28 - 1548x26 + 5644x24 - 13098x22 + 29340x20 - 63802x18 + 131850x16 - 246222x14 + 354484x12 - 42756x10 + 5157x8 - 622x6 + 75x4 - 9x2 + 1 \( 2^{36}\cdot 3^{48}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[14, 14]$ (GRH)
36.0.152352057627354962655862528959273781104287214136691847895281.1 x36 - 4x33 + 57x30 - 36x27 + 1910x24 - 2801x21 + 16733x18 + 11446x15 + 36100x12 - 11599x9 + 4932x6 + 69x3 + 1 \( 3^{54}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[182]$ (GRH)
36.0.157229013891772345498599951736092754417390325814062078754816.1 x36 - 512x18 + 262144 \( 2^{54}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.157229013891772345498599951736092754417390325814062078754816.2 x36 + 512x18 + 262144 \( 2^{54}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.459146050215773460843525344476713987772454059613596693862733.1 x36 + 3x34 - x33 + 9x32 - 6x31 + 28x30 - 27x29 + 90x28 - 109x27 + 297x26 - 417x25 + 1000x24 + 1845x23 + 3417x22 + 4535x21 + 8406x20 + 10188x19 + 20683x18 + 22158x17 + 51861x16 + 45791x15 + 133425x14 + 85512x13 + 354484x12 + 123111x11 + 42756x10 + 14849x9 + 5157x8 + 1791x7 + 622x6 + 216x5 + 75x4 + 26x3 + 9x2 + 3x + 1 \( 3^{48}\cdot 13^{33} \) $C_3\times C_{12}$ (as 36T3) $[3, 3, 9, 9]$ (GRH)
36.0.541055976048072725104260184584057273870769716344028569534464.1 x36 - 2x34 + 4x32 - 8x30 + 16x28 - 32x26 + 64x24 - 128x22 + 256x20 - 512x18 + 1024x16 - 2048x14 + 4096x12 - 8192x10 + 16384x8 - 32768x6 + 65536x4 - 131072x2 + 262144 \( 2^{54}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.541055976048072725104260184584057273870769716344028569534464.2 x36 + 2x34 + 4x32 + 8x30 + 16x28 + 32x26 + 64x24 + 128x22 + 256x20 + 512x18 + 1024x16 + 2048x14 + 4096x12 + 8192x10 + 16384x8 + 32768x6 + 65536x4 + 131072x2 + 262144 \( 2^{54}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.619876750267203693326033178758188478035934269428253173828125.1 x36 - x35 + 9x34 - 10x33 + 54x32 - 49x31 + 257x30 - 206x29 + 1100x28 - 836x27 + 3655x26 - 2571x25 + 10339x24 - 5625x23 + 24829x22 - 12149x21 + 52298x20 - 24437x19 + 84375x18 - 31001x17 + 114806x16 - 20386x15 + 122457x14 - 26351x13 + 111183x12 - 31899x11 + 59771x10 - 9196x9 + 26744x8 + 4893x7 + 5542x6 + 509x5 + 1260x4 - 205x3 + 35x2 - 5x + 1 \( 5^{27}\cdot 19^{32} \) $C_{36}$ (as 36T1) $[1417]$ (GRH)
36.0.2215020037800761116296816339199940379209022060324490202578944.1 x36 - 17x34 + 169x32 - 1130x30 + 5664x28 - 21853x26 + 66874x24 - 162613x22 + 316711x20 - 487810x18 + 592078x16 - 549123x14 + 384931x12 - 190091x10 + 66033x8 - 13002x6 + 1695x4 - 45x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[171]$ (GRH)
36.0.4739846101393836610854424577149665214795350880765994711657721.1 x36 - x35 - 4x34 + 15x33 - 16x32 - 64x31 + 289x30 + 606x29 - 2131x28 + 1716x27 + 8000x26 - 37236x25 + 41632x24 + 157678x23 + 138311x22 - 88085x21 - 438826x20 - 452289x19 + 632324x18 + 713006x17 - 496621x16 - 2036590x15 - 2057459x14 + 1547178x13 + 6189592x12 + 1579124x11 - 31870x10 - 127114x9 - 32211x8 + 891x7 + 2434x6 - 49x5 - 196x4 - 50x3 + x2 + 4x + 1 \( 3^{18}\cdot 7^{30}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[6, 78]$ (GRH)
36.0.6858379380370190025774854438611053598470472411685943603515625.1 x36 + 9x34 - 4x33 + 72x32 - 69x31 + 584x30 + 981x29 + 4881x28 + 7326x27 + 34614x26 + 39264x25 + 241820x24 + 164610x23 + 347325x22 + 272002x21 + 443511x20 + 341952x19 + 513316x18 + 62091x17 + 423768x16 + 53105x15 + 415071x14 + 105954x13 + 408896x12 + 148752x11 + 103692x10 + 47916x9 + 30861x8 + 10350x7 + 8009x6 - 1710x5 + 372x4 - 77x3 + 18x2 - 3x + 1 \( 3^{48}\cdot 5^{18}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[18, 126]$ (GRH)
36.0.7225377334561374804949923918873673793376691639423370361328125.1 x36 + 9x34 + 54x32 + 273x30 + 1260x28 - x27 + 4374x26 - 18x25 + 13050x24 - 189x23 + 34695x22 - 153x21 + 79785x20 + 1935x19 + 133435x18 + 11664x17 + 197460x16 + 36792x15 + 255879x14 + 40932x13 + 256629x12 + 26649x11 + 121878x10 + 26x9 + 55485x8 - 19917x7 + 22041x6 - 4752x5 + 6021x4 - 699x3 + 81x2 - 9x + 1 \( 3^{88}\cdot 5^{27} \) $C_{36}$ (as 36T1) $[2053]$ (GRH)
36.0.48526755753740305052512669329205843844959387036328330042655969.1 x36 - 136x27 - 1187x18 - 2676888x9 + 387420489 \( 3^{90}\cdot 11^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.36.65028396011052373244549315269863064140390224754810333251953125.1 x36 - 36x34 + 594x32 - 5952x30 + 40455x28 - x27 - 197316x26 + 27x25 + 712530x24 - 324x23 - 1937520x22 + 2277x21 + 3996135x20 - 10395x19 - 6249100x18 + 32319x17 + 7354710x16 - 69768x15 - 6418656x14 + 104652x13 + 4056234x12 - 107406x11 - 1790712x10 + 72931x9 + 523260x8 - 30897x7 - 93024x6 + 7398x5 + 8721x4 - 849x3 - 324x2 + 36x + 1 \( 3^{90}\cdot 5^{27} \) $C_{36}$ (as 36T1) Trivial (GRH)
36.0.77455827645541172243429237514462094454119707909588182611525632.1 x36 + 3 \( 2^{36}\cdot 3^{107} \) $(C_2\times C_{18}):C_6$ (as 36T185) Trivial (GRH)
36.0.80731161945559438248836517604483794680492496928434000672170721.1 x36 - x35 + 18x34 - 15x33 + 185x32 - 137x31 + 1281x30 - 831x29 + 6616x28 - 3799x27 + 26339x26 - 13196x25 + 83006x24 - 36260x23 + 208286x22 - 77735x21 + 418163x20 - 132518x19 + 666068x18 - 173318x17 + 834766x16 - 177139x15 + 804267x14 - 129870x13 + 582511x12 - 73129x11 + 302060x10 - 23507x9 + 107217x8 - 7128x7 + 23244x6 - 78x5 + 2775x4 - 165x3 + 126x2 + 9x + 1 \( 3^{18}\cdot 37^{34} \) $C_2\times C_{18}$ (as 36T2) $[19, 684]$ (GRH)
36.0.90067643300370785938616861622694756230952958181429238736879616.1 x36 + 36x34 + 594x32 + 5953x30 + 40485x28 + 197721x26 + 715780x24 + 1954770x22 + 4059891x20 + 6417344x18 + 7674462x16 + 6854571x14 + 4475587x12 + 2066547x10 + 640764x8 + 122466x6 + 12276x4 + 432x2 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 28, 364]$ (GRH)
36.36.90067643300370785938616861622694756230952958181429238736879616.1 x36 - 36x34 + 594x32 - 5951x30 + 40425x28 - 196911x26 + 709280x24 - 1920270x22 + 3932379x20 - 6080856x18 + 7034958x16 - 5982741x14 + 3636879x12 - 1514853x10 + 405648x8 - 63358x6 + 4956x4 - 144x2 + 1 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) Trivial (GRH)
36.0.90067643300370785938616861622694756230952958181429238736879616.2 x36 + 6x34 + 27x32 + 111x30 + 441x28 + 1728x26 + 6732x24 + 12906x22 + 22032x20 + 36234x18 + 57834x16 + 86994x14 + 110160x12 + 51516x10 + 24057x8 + 11178x6 + 5103x4 + 2187x2 + 729 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) $[2, 14, 182]$ (GRH)
36.0.90067643300370785938616861622694756230952958181429238736879616.3 x36 + 70x30 + 4067x24 + 57624x18 + 669879x12 + 285719x6 + 117649 \( 2^{36}\cdot 3^{54}\cdot 7^{30} \) $C_6^2$ (as 36T4) n/a
36.0.113857935275994928933450454958497004305286414921283721923828125.1 x36 + 15x34 - 4x33 + 171x32 + 132x31 + 1809x30 + 1683x29 + 17889x28 + 12647x27 + 85860x26 + 52491x25 + 358026x24 + 22707x23 + 1329663x22 + 118787x21 + 4193811x20 + 697212x19 + 3532755x18 + 635940x17 + 2414307x16 + 853087x15 + 1609083x14 + 558075x13 + 908302x12 + 274491x11 + 259680x10 + 62761x9 + 63297x8 + 693x7 + 10925x6 + 846x5 + 1881x4 + 286x3 + 45x2 + 6x + 1 \( 3^{48}\cdot 5^{27}\cdot 7^{24} \) $C_3\times C_{12}$ (as 36T3) $[14, 518]$ (GRH)
36.0.122958312298624478991860638998897557972401876087680816650390625.1 x36 - x35 + 26x34 - 15x33 + 413x32 - 173x31 + 4027x30 - 789x29 + 28017x28 - 2298x27 + 134511x26 + 7347x25 + 472642x24 + 48836x23 + 1180619x22 + 171615x21 + 2210278x20 + 335012x19 + 3064502x18 + 471070x17 + 3227734x16 + 424487x15 + 2498777x14 + 259210x13 + 1437594x12 + 75846x11 + 567447x10 - 2642x9 + 158238x8 - 9682x7 + 24598x6 - 3269x5 + 2670x4 - 215x3 + 80x2 + 5x + 1 \( 3^{18}\cdot 5^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[9, 1629]$ (GRH)
36.36.129739382499069208406967320777552926214641189868504834496493597.1 x36 - x35 - 36x34 + 35x33 + 594x32 - 560x31 - 5952x30 + 5426x29 + 40454x28 - 35554x27 - 197288x26 + 166634x25 + 712180x24 - 576199x23 - 1934944x22 + 1494700x21 + 3983738x20 - 2928983x19 - 6208136x18 + 4331906x17 + 7259749x16 - 4795428x15 - 6263633x14 + 3907332x13 + 3879994x12 - 2278575x11 - 1655004x10 + 908896x9 + 456052x8 - 230058x7 - 73571x6 + 32327x5 + 6018x4 - 1922x3 - 216x2 + 24x + 1 \( 7^{30}\cdot 13^{33} \) $C_3\times C_{12}$ (as 36T3) Trivial (GRH)
36.0.166990115557548038315544519372094023948173088869511853538488801.1 x36 - x35 - 2x34 + 5x33 + x32 - 16x31 + 13x30 + 35x29 - 74x28 - 31x27 + 253x26 - 160x25 - 599x24 + 1079x23 + 718x22 - 3955x21 + 1801x20 + 10064x19 - 15467x18 + 30192x17 + 16209x16 - 106785x15 + 58158x14 + 262197x13 - 436671x12 - 349920x11 + 1659933x10 - 610173x9 - 4369626x8 + 6200145x7 + 6908733x6 - 25509168x5 + 4782969x4 + 71744535x3 - 86093442x2 - 129140163x + 387420489 \( 11^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.194462611843897382024510486606832173718103280006113355559179361.1 x36 - x35 + 28x34 - 17x33 + 482x32 - 236x31 + 5049x30 - 1832x29 + 37992x28 - 12295x27 + 199953x26 - 58763x25 + 782564x24 - 233544x23 + 2165880x22 - 629685x21 + 4427149x20 - 1126928x19 + 6143602x18 - 998749x17 + 6093363x16 - 685062x15 + 4237386x14 - 223893x13 + 2109469x12 - 79641x11 + 708581x10 - 7791x9 + 162475x8 - 6767x7 + 22097x6 - 1065x5 + 2093x4 - 92x3 + 81x2 + 6x + 1 \( 3^{18}\cdot 7^{24}\cdot 13^{30} \) $C_6^2$ (as 36T4) $[2, 2, 2, 2, 2, 6, 114]$ (GRH)
36.0.200687573080369568029416132506181048520658333428355416190877696.1 x36 - 304x30 + 84160x24 - 2508800x18 + 68005888x12 - 4227072x6 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[18, 18]$ (GRH)
36.0.200687573080369568029416132506181048520658333428355416190877696.2 x36 + 304x30 + 84160x24 + 2508800x18 + 68005888x12 + 4227072x6 + 262144 \( 2^{54}\cdot 3^{54}\cdot 7^{24} \) $C_6^2$ (as 36T4) $[18, 54]$ (GRH)
36.36.223775506846460533290697977531706040570972271263599395751953125.1 x36 - x35 - 36x34 + 35x33 + 594x32 - 559x31 - 5953x30 + 5394x29 + 40485x28 - 35091x27 - 197720x26 + 162629x25 + 715754x24 - 553125x23 - 1954471x22 + 1401346x21 + 4057888x20 - 2656542x19 - 6408680x18 + 3752139x17 + 7649116x16 - 3896996x15 - 6803518x14 + 2906674x13 + 4404908x12 - 1498899x11 - 2000649x10 + 503479x9 + 601194x8 - 100432x7 - 108458x6 + 10534x5 + 9885x4 - 605x3 - 340x2 + 20x + 1 \( 5^{27}\cdot 19^{34} \) $C_{36}$ (as 36T1) Trivial (GRH)
36.36.334717470607298852954929976123524497086119009458311989825932357.1 x36 - 36x34 - x33 + 594x32 + 33x31 - 5952x30 - 495x29 + 40455x28 + 4467x27 - 197316x26 - 27054x25 + 712529x24 + 116154x23 - 1937496x22 - 364067x21 + 3995883x20 + 845295x19 - 6247579x18 - 1459998x17 + 7348878x16 + 1867585x15 - 6403833x14 - 1746123x13 + 4030936x12 + 1165464x11 - 1761969x10 - 534544x9 + 502173x8 + 158337x7 - 83631x6 - 27162x5 + 6471x4 + 2145x3 - 108x2 - 36x + 1 \( 3^{54}\cdot 13^{33} \) $C_3\times C_{12}$ (as 36T3) Trivial (GRH)
36.0.392893567271872510941083606170645734076396278452324169894854656.1 x36 + 49x32 + 932x28 + 8695x24 + 41461x20 + 96055x16 + 93536x12 + 28314x8 + 1365x4 + 1 \( 2^{72}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[19, 171]$ (GRH)
36.0.799622233646074762983150698451178476894456963777140963130998784.1 x36 + 37x34 + 628x32 + 6478x30 + 45354x28 + 227942x26 + 848161x24 + 2375189x22 + 5038516x20 + 8084594x18 + 9725341x16 + 8624289x14 + 5490811x12 + 2413645x10 + 691677x8 + 118407x6 + 10470x4 + 360x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[52934]$ (GRH)
36.36.799622233646074762983150698451178476894456963777140963130998784.1 x36 - 35x34 + 560x32 - 5426x30 + 35554x28 - 166634x26 + 576201x24 - 1494747x22 + 2929464x20 - 4334718x18 + 4805781x16 - 3932287x14 + 2318239x12 - 949739x10 + 256105x8 - 41769x6 + 3570x4 - 120x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.799622233646074762983150698451178476894456963777140963130998784.2 x36 + 19x34 + 209x32 + 1558x30 + 8740x28 + 38095x26 + 132810x24 + 372723x22 + 848787x20 + 1558038x18 + 2298126x16 + 2670317x14 + 2415451x12 + 1629193x10 + 806113x8 + 262086x6 + 57399x4 + 5415x2 + 361 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.799622233646074762983150698451178476894456963777140963130998784.3 x36 + 3x34 + 9x32 + 27x30 + 81x28 + 243x26 + 729x24 + 2187x22 + 6561x20 + 19683x18 + 59049x16 + 177147x14 + 531441x12 + 1594323x10 + 4782969x8 + 14348907x6 + 43046721x4 + 129140163x2 + 387420489 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.840739592110096304569466677876458557457237523263143378686050304.1 x36 - 9x34 + 67x32 - 478x30 + 3373x28 - 23732x26 + 166844x24 - 325502x22 + 617434x20 - 1166722x18 + 2181924x16 - 3920642x14 + 5905564x12 - 443012x10 + 33233x8 - 2493x6 + 187x4 - 14x2 + 1 \( 2^{36}\cdot 7^{30}\cdot 13^{24} \) $C_6^2$ (as 36T4) $[3, 6, 78]$ (GRH)

Next

Download all search results for