Learn more about

Further refine search

Results (displaying all 49 matches)

Label Polynomial Discriminant Galois group Class group
29.1.2534540630047957759699255486477651520670733.1 x29 - x - 1 \( 41393681953973\cdot 61230132484136034758796880121 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.8948737504120671477993534661511237990596936204288.1 x29 + 4x - 4 \( 2^{28}\cdot 27325532669\cdot 1219981524656697632736241282817 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.17794869790215571810758429845540237722220204018701.1 x29 + 2x - 1 \( 461801\cdot 20212226753\cdot 3536300443131271\cdot 539109057311673427 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.26146730757746268604771485057902487410941420896256.1 x29 - 4x - 4 \( 2^{28}\cdot 53\cdot 179\cdot 10267119471732676863546062197607495323 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.29.38358032782038398419973086399760468678777161743121.1 x29 - x28 - 28x27 + 27x26 + 351x25 - 325x24 - 2600x23 + 2300x22 + 12650x21 - 10626x20 - 42504x19 + 33649x18 + 100947x17 - 74613x16 - 170544x15 + 116280x14 + 203490x13 - 125970x12 - 167960x11 + 92378x10 + 92378x9 - 43758x8 - 31824x7 + 12376x6 + 6188x5 - 1820x4 - 560x3 + 105x2 + 15x - 1 \( 59^{28} \) $C_{29}$ (as 29T1) Trivial (GRH)
29.1.671463136166186133768834421731274208264739599941632.1 x29 - 2x - 2 \( 2^{28}\cdot 3\cdot 11\cdot 563\cdot 134635615853097819303336173003083422943 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.689258003355570029305128342152413503002579071664128.1 x29 - x - 2 \( 2^{28}\cdot 23\cdot 2505541501481\cdot 44556647066894154934970530051 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.689258003388715552294905021323738295429713895620608.1 x29 - x - 4 \( 2^{30}\cdot 13\cdot 3373\cdot 84163\cdot 173940633187564199922371542429441 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.689258003388715552418381717014986231255943677476864.1 x29 - 2 \( 2^{28}\cdot 29^{29} \) $F_{29}$ (as 29T6) Trivial (GRH)
29.1.707052870611244971067929012298698254247147755012096.1 x29 + 2x - 2 \( 2^{28}\cdot 499\cdot 541\cdot 695389\cdot 2739817\cdot 5913513689\cdot 866002650952007 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.3.2274789759216463037320759498792527390442169528114066419.1 x29 - 3x - 1 \( -\,19\cdot 157273\cdot 116400694409\cdot 6540002603845429295048615140626894593 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.2274789759221598409627081921061651046871631560367033357.1 x29 + 3x - 1 \( 17\cdot 41\cdot 74959\cdot 160217\cdot 2662789\cdot 25396823\cdot 76318073627\cdot 52654144463043283 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.2275479017222419439026339091644104204888156487918026752.1 x29 + 3x - 2 \( 2^{28}\cdot 8447\cdot 1003530236440432082546482634511606676653811 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.56465633456127198798358813489589629057788939128252989821.1 x29 - 3x - 3 \( 3^{28}\cdot 13\cdot 41\cdot 389\cdot 1619\cdot 4483\cdot 202067\cdot 1052207903\cdot 7714356793195489 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.56529861506972062159162236492963947280952164588608535237.1 x29 + 4x - 1 \( 3\cdot 258439534144219859900797151\cdot 72911782755634284235524422729 \) $S_{29}$ (as 29T8) $[2]$ (GRH)
29.1.58740405420479006992414084652221434564422848468416004477.1 x29 - 2x - 3 \( 43\cdot 907\cdot 40322333\cdot 5439157486181\cdot 6867266657725622021109001049749 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.58740423215346196376309620946141855703717586307887726973.1 x29 - x - 3 \( 179\cdot 373\cdot 277813\cdot 42259019123\cdot 2243721410717\cdot 33399064272490942843393 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.58740423215346229521832734199516718276445839672493539709.1 x29 - 3 \( 3^{28}\cdot 29^{29} \) $F_{29}$ (as 29T6) Trivial (GRH)
29.1.58740423215346262667355847452891580849174093037099352445.1 x29 + x - 3 \( 5\cdot 11\cdot 16381\cdot 127865750920013\cdot 1994744457920647\cdot 255618611114956521989 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.61015212974565260245306654909443807495102740216734089597.1 x29 + 3x - 3 \( 3^{28}\cdot 119533\cdot 419161\cdot 53232187366908496998206741390729 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.3.9553545905420272548496712387718055513666469828515038494720.1 x29 - 4x - 2 \( -\,2^{28}\cdot 5\cdot 7117946375474536827576691201119166250278405717399 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.3.9553546594678273369526111644888637966824486353442589488115.1 x29 - 4x - 1 \( -\,5\cdot 71\cdot 1070754779627347\cdot 25133111119629637924203464052947473855979 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.9553547283936279325927817224481489543638932340402393448448.1 x29 + 4x - 2 \( 2^{28}\cdot 3\cdot 3783589506654278873\cdot 3135447344393691704372001950407 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.9612287017893622166734097540299289246929146924131209511293.1 x29 + 4x - 3 \( 3744524429\cdot 8675517281441\cdot 295892994260421814018306476982622737 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.46255321605876134336297695084858373134299667695653709938688.1 x29 - 2x - 4 \( 2^{54}\cdot 3\cdot 151\cdot 1208109059\cdot 4691779529989938182463888683491 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.46255321614773567947562404409632020776155679191255748706304.1 x29 + 2x - 4 \( 2^{54}\cdot 853\cdot 133051\cdot 22624279891052931716065193190632827 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.185019011651540185536996725068270860731692036873274676740096.1 x29 - 3x - 4 \( 2^{57}\cdot 71\cdot 14785399\cdot 5818658096101217\cdot 210180474110289901 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.185021286441299404600865722102234162683483422027183523102720.1 x29 + x - 4 \( 2^{57}\cdot 3\cdot 5\cdot 5205763\cdot 56893477\cdot 288984011824906401353807959 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.1543458696312913698675051161307795429253746557813985919369216.1 x29 + 5x - 2 \( 2^{26}\cdot 337\cdot 709\cdot 224066062071001\cdot 7834502381769247\cdot 54834197285853919 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.3.6173776044139181445081967260078600483281723554160327506460291.1 x29 - 5x - 3 \( -\,17\cdot 640949\cdot 12442531\cdot 15716663\cdot 2897406320048726202827323835684675345659 \) $S_{29}$ (as 29T8) n/a
29.3.6173834783873138787922773540394418282985013768744056322523136.1 x29 - 5x - 2 \( -\,2^{28}\cdot 3\cdot 47\cdot 19231\cdot 1239599\cdot 17156593\cdot 53138329\cdot 7505402452445630661805687 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.3.6173834784562396788743802939651588865438171785268983873516531.1 x29 - 5x - 1 \( -\,3\cdot 9533\cdot 2608914479\cdot 82745486276580889140961704645736700550611234411 \) $S_{29}$ (as 29T8) n/a
29.1.6173893524985612137541010925546999516718276445839672493539709.1 x29 + 5x - 3 \( 23\cdot 79\cdot 107\cdot 931421\cdot 23882194037539\cdot 1427579104021681143732218630118134569 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.6358856071003696195879209291801780787820910693773818917289984.1 x29 + 5x - 4 \( 2^{57}\cdot 37\cdot 1397743\cdot 853179068682579746198218224556362467 \) $S_{29}$ (as 29T8) n/a
29.1.9942214263789125036236993858649470315293259918689727783203125.1 x29 - 5x - 5 \( 5^{28}\cdot 17\cdot 401\cdot 578483771\cdot 67676598636720696780695919103 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.95644209612069843841507221555851933065110686567123091332856541.1 x29 - 4x - 5 \( 167\cdot 239\cdot 2396317230277599875767474796578857341345192958863605625557 \) $S_{29}$ (as 29T8) n/a
29.1.95653760883874762898413710346737322910550120611307005808278237.1 x29 - 3x - 5 \( 42691141\cdot 481626857\cdot 2939004407579\cdot 35136939022453\cdot 45049443348110236823 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.95653763158646727250221904402008485542355627245216345971292893.1 x29 - 2x - 5 \( 3\cdot 43\cdot 57617873845633\cdot 10667339907787007\cdot 1206421276967288581188470646307 \) $S_{29}$ (as 29T8) n/a
29.1.95653763158664522117411288297544779462776766539954185443015389.1 x29 - x - 5 \( 7976611\cdot 37252257474505795723\cdot 321907467498837092682537183194821213 \) $S_{29}$ (as 29T8) n/a
29.1.95653763158664522117444433820658032837639339268207550048828125.1 x29 - 5 \( 5^{28}\cdot 29^{29} \) $F_{29}$ (as 29T6) Trivial (GRH)
29.1.95653763158664522117477579343771286212501911996460914654640861.1 x29 + x - 5 \( 3\cdot 21937\cdot 1453461627367226179779635309352103542151037242960309289551 \) $S_{29}$ (as 29T8) Trivial (GRH)
29.1.95653763158682316984666963239307580132923051291198754126363357.1 x29 + 2x - 5 \( 249943\cdot 26856873607\cdot 14249696906693522454650828582541268055898962557 \) $S_{29}$ (as 29T8) n/a
29.1.95653765433454281336475157294578742764728557925108094289378013.1 x29 + 3x - 5 \( 95653765433454281336475157294578742764728557925108094289378013 \) $S_{29}$ (as 29T8) n/a
29.1.101827597943226918908755922913470832837639339268207550048828125.1 x29 + 5x - 5 \( 5^{28}\cdot 67\cdot 83\cdot 109\cdot 258109\cdot 17471204070644246529256292429789 \) $S_{29}$ (as 29T8) n/a
29.29.1931816133436230496253440348173909042983780087233421135736506627041.1 x29 - x28 - 112x27 + 91x26 + 5198x25 - 3644x24 - 132219x23 + 83238x22 + 2053518x21 - 1187959x20 - 20553532x19 + 11071128x18 + 136460842x17 - 69042962x16 - 609473492x15 + 292259011x14 + 1836592125x13 - 845018358x12 - 3706016039x11 + 1661552324x10 + 4906886664x9 - 2177019390x8 - 4095369839x7 + 1819962089x6 + 1998032360x5 - 895362174x4 - 490947342x3 + 221892059x2 + 42927079x - 19524467 \( 233^{28} \) $C_{29}$ (as 29T1) Trivial (GRH)
29.29.158165571476523684791187605131317359442300677347381843010071500056545201.1 x29 - x28 - 168x27 + 353x26 + 11480x25 - 34328x24 - 410190x23 + 1556443x22 + 8267052x21 - 38827232x20 - 94788585x19 + 575669857x18 + 574148959x17 - 5286405734x16 - 1118675686x15 + 30698615326x14 - 6935797323x13 - 112817035992x12 + 51055206761x11 + 256367413593x10 - 136472035194x9 - 340428884896x8 + 170672875682x7 + 236550118296x6 - 94550319984x5 - 69592403677x4 + 18732474566x3 + 3480965541x2 - 875365500x + 10242329 \( 349^{28} \) $C_{29}$ (as 29T1) Trivial (GRH)
29.29.13123427860740340635045684158089751314114754706664887333885491004189525894481.1 x29 - x28 - 252x27 + 493x26 + 26301x25 - 70613x24 - 1477005x23 + 4757585x22 + 49139083x21 - 176708296x20 - 1019533247x19 + 3897692875x18 + 13650905238x17 - 52791707208x16 - 121558760223x15 + 441031541121x14 + 744433170879x13 - 2221117761731x12 - 3198643328695x11 + 6333895042002x10 + 9161654939551x9 - 8623697894872x8 - 14867816867065x7 + 2648025494151x6 + 9891108006231x5 + 1898151784214x4 - 1956687026062x3 - 891062263511x2 - 130453149826x - 6306528127 \( 523^{28} \) $C_{29}$ (as 29T1) Trivial (GRH)
29.29.7839491297426657080705875253942679356383134413463412253884527413516798034573044321.1 x29 - 406x27 - 261x26 + 60784x25 - 10237x24 - 4881280x23 + 6951010x22 + 231791925x21 - 664329796x20 - 6378435885x19 + 29829836682x18 + 83025301615x17 - 713976297106x16 + 200377868604x15 + 8552568793352x14 - 19940770675013x13 - 30466827556936x12 + 199293371073354x11 - 244879309451696x10 - 341168817490702x9 + 1410119390706929x8 - 1755729397271788x7 + 798559330062447x6 + 263826444292294x5 - 372309027818008x4 + 45256457625802x3 + 48917493171904x2 - 7142036935967x - 2480435158303 \( 29^{56} \) $C_{29}$ (as 29T1) n/a
29.29.127186199976511404062972685561977327455002805301971051425559672113022697399314124161.1 x29 - x28 - 448x27 + 107x26 + 76138x25 - 43560x24 - 6896718x23 + 8492788x22 + 374467531x21 - 737137472x20 - 12707566814x19 + 34389111341x18 + 270515586354x17 - 939536322456x16 - 3528471156331x15 + 15628114907220x14 + 26518327124887x13 - 161458375653531x12 - 93674380846644x11 + 1045971567643780x10 - 54383106047402x9 - 4238937042324143x8 + 1725076964802557x7 + 10520005444822970x6 - 6101874655993302x5 - 15103434975606529x4 + 9152562248392343x3 + 10944332007104174x2 - 5127494290967802x - 2711408412652309 \( 929^{28} \) $C_{29}$ (as 29T1) n/a



Download all search results for