Properties

Label 9.5.354866144000.1
Degree $9$
Signature $[5, 2]$
Discriminant $354866144000$
Root discriminant \(19.20\)
Ramified primes $2,5,223$
Class number $1$
Class group trivial
Galois group $S_3\wr S_3$ (as 9T31)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5)
 
gp: K = bnfinit(y^9 - 3*y^8 + 4*y^7 - 6*y^6 - y^5 + 9*y^4 - 21*y^3 + 7*y^2 + 25*y + 5, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5)
 

\( x^{9} - 3x^{8} + 4x^{7} - 6x^{6} - x^{5} + 9x^{4} - 21x^{3} + 7x^{2} + 25x + 5 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(354866144000\) \(\medspace = 2^{8}\cdot 5^{3}\cdot 223^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.20\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}5^{1/2}223^{1/2}\approx 84.14159905646059$
Ramified primes:   \(2\), \(5\), \(223\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1115}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{14018}a^{8}-\frac{2819}{7009}a^{7}+\frac{2673}{7009}a^{6}-\frac{17}{7009}a^{5}-\frac{4663}{14018}a^{4}+\frac{3141}{7009}a^{3}-\frac{3641}{14018}a^{2}-\frac{2655}{7009}a-\frac{6555}{14018}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2627}{14018}a^{8}-\frac{4009}{7009}a^{7}+\frac{5962}{7009}a^{6}-\frac{9614}{7009}a^{5}+\frac{2031}{14018}a^{4}+\frac{8823}{7009}a^{3}-\frac{60703}{14018}a^{2}+\frac{13288}{7009}a+\frac{50191}{14018}$, $\frac{1393}{14018}a^{8}-\frac{1827}{7009}a^{7}+\frac{1710}{7009}a^{6}-\frac{2654}{7009}a^{5}-\frac{5225}{14018}a^{4}+\frac{8806}{7009}a^{3}-\frac{25433}{14018}a^{2}+\frac{2337}{7009}a+\frac{22639}{14018}$, $\frac{480}{7009}a^{8}-\frac{766}{7009}a^{7}+\frac{786}{7009}a^{6}-\frac{2302}{7009}a^{5}-\frac{2369}{7009}a^{4}+\frac{1490}{7009}a^{3}-\frac{9448}{7009}a^{2}-\frac{4533}{7009}a+\frac{641}{7009}$, $\frac{1382}{7009}a^{8}-\frac{4717}{7009}a^{7}+\frac{7695}{7009}a^{6}-\frac{11943}{7009}a^{5}+\frac{4014}{7009}a^{4}+\frac{11591}{7009}a^{3}-\frac{34445}{7009}a^{2}+\frac{21030}{7009}a+\frac{24654}{7009}$, $\frac{1188}{7009}a^{8}-\frac{4349}{7009}a^{7}+\frac{7903}{7009}a^{6}-\frac{12356}{7009}a^{5}+\frac{4475}{7009}a^{4}+\frac{12449}{7009}a^{3}-\frac{36000}{7009}a^{2}+\frac{27856}{7009}a+\frac{13677}{7009}$, $\frac{1005}{14018}a^{8}-\frac{1459}{7009}a^{7}+\frac{1918}{7009}a^{6}-\frac{3067}{7009}a^{5}-\frac{4303}{14018}a^{4}+\frac{9664}{7009}a^{3}-\frac{28543}{14018}a^{2}+\frac{2154}{7009}a+\frac{42739}{14018}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 591.374538482 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{2}\cdot 591.374538482 \cdot 1}{2\cdot\sqrt{354866144000}}\cr\approx \mathstrut & 0.627061385591 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 4*x^7 - 6*x^6 - x^5 + 9*x^4 - 21*x^3 + 7*x^2 + 25*x + 5);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr S_3$ (as 9T31):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$ is not computed

Intermediate fields

3.3.892.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ R ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.9.0.1}{9} }$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
\(223\) Copy content Toggle raw display $\Q_{223}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $6$$2$$3$$3$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.4460.2t1.a.a$1$ $ 2^{2} \cdot 5 \cdot 223 $ \(\Q(\sqrt{1115}) \) $C_2$ (as 2T1) $1$ $1$
1.892.2t1.a.a$1$ $ 2^{2} \cdot 223 $ \(\Q(\sqrt{223}) \) $C_2$ (as 2T1) $1$ $1$
1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
2.22300.6t3.c.a$2$ $ 2^{2} \cdot 5^{2} \cdot 223 $ 6.6.88716536000.1 $D_{6}$ (as 6T3) $1$ $2$
* 2.892.3t2.a.a$2$ $ 2^{2} \cdot 223 $ 3.3.892.1 $S_3$ (as 3T2) $1$ $2$
3.795664.6t8.a.a$3$ $ 2^{4} \cdot 223^{2}$ 4.0.892.1 $S_4$ (as 4T5) $1$ $-1$
3.892.4t5.a.a$3$ $ 2^{2} \cdot 223 $ 4.0.892.1 $S_4$ (as 4T5) $1$ $-1$
3.99458000.6t11.a.a$3$ $ 2^{4} \cdot 5^{3} \cdot 223^{2}$ 6.2.99458000.3 $S_4\times C_2$ (as 6T11) $1$ $-1$
3.111500.6t11.a.a$3$ $ 2^{2} \cdot 5^{3} \cdot 223 $ 6.2.99458000.3 $S_4\times C_2$ (as 6T11) $1$ $-1$
6.791...000.18t319.a.a$6$ $ 2^{8} \cdot 5^{3} \cdot 223^{4}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
6.397832000.18t311.a.a$6$ $ 2^{6} \cdot 5^{3} \cdot 223^{2}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
* 6.397832000.9t31.a.a$6$ $ 2^{6} \cdot 5^{3} \cdot 223^{2}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
6.791...000.18t300.a.a$6$ $ 2^{8} \cdot 5^{3} \cdot 223^{4}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
8.125...000.24t2893.a.a$8$ $ 2^{14} \cdot 5^{4} \cdot 223^{6}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
8.31826560000.12t213.a.a$8$ $ 2^{10} \cdot 5^{4} \cdot 223^{2}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.112...000.36t2217.a.a$12$ $ 2^{18} \cdot 5^{6} \cdot 223^{7}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.314...000.36t2210.a.a$12$ $ 2^{14} \cdot 5^{6} \cdot 223^{6}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $-4$
12.141...000.36t2214.a.a$12$ $ 2^{14} \cdot 5^{6} \cdot 223^{5}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.112...000.36t2216.a.a$12$ $ 2^{18} \cdot 5^{6} \cdot 223^{7}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.141...000.18t315.a.a$12$ $ 2^{14} \cdot 5^{6} \cdot 223^{5}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
16.400...000.24t2912.a.a$16$ $ 2^{24} \cdot 5^{8} \cdot 223^{8}$ 9.5.354866144000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.