Properties

Label 9.1.2125764000000.5
Degree $9$
Signature $[1, 4]$
Discriminant $2.126\times 10^{12}$
Root discriminant \(23.43\)
Ramified primes $2,3,5$
Class number $1$
Class group trivial
Galois group $C_3^2:C_4$ (as 9T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4)
 
gp: K = bnfinit(y^9 - 3*y^8 + 3*y^7 - 15*y^6 + 33*y^5 - 3*y^4 + 24*y^3 + 6*y^2 - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4)
 

\( x^{9} - 3x^{8} + 3x^{7} - 15x^{6} + 33x^{5} - 3x^{4} + 24x^{3} + 6x^{2} - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2125764000000\) \(\medspace = 2^{8}\cdot 3^{12}\cdot 5^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.43\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{25/18}5^{3/4}\approx 30.755720695068224$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}-\frac{1}{5}a^{4}+\frac{2}{5}a^{3}+\frac{1}{5}a^{2}-\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{6}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{50}a^{7}+\frac{3}{50}a^{6}-\frac{3}{50}a^{5}-\frac{1}{2}a^{4}+\frac{3}{10}a^{3}+\frac{7}{50}a^{2}+\frac{8}{25}a+\frac{7}{25}$, $\frac{1}{50}a^{8}-\frac{1}{25}a^{6}+\frac{2}{25}a^{5}-\frac{2}{5}a^{4}-\frac{9}{25}a^{3}+\frac{1}{10}a^{2}+\frac{8}{25}a-\frac{6}{25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{10}a^{8}-\frac{7}{25}a^{7}+\frac{4}{25}a^{6}-\frac{29}{25}a^{5}+\frac{13}{5}a^{4}+\frac{9}{5}a^{3}-\frac{53}{50}a^{2}+\frac{68}{25}a-\frac{33}{25}$, $\frac{1}{5}a^{8}-\frac{43}{50}a^{7}+\frac{51}{50}a^{6}-\frac{131}{50}a^{5}+\frac{19}{2}a^{4}-\frac{9}{2}a^{3}-\frac{351}{50}a^{2}-\frac{114}{25}a-\frac{11}{25}$, $\frac{1}{25}a^{8}-\frac{11}{50}a^{7}+\frac{23}{50}a^{6}-\frac{39}{50}a^{5}+\frac{5}{2}a^{4}-\frac{181}{50}a^{3}-\frac{7}{50}a^{2}+\frac{28}{25}a+\frac{26}{25}$, $\frac{1}{50}a^{8}-\frac{44}{25}a^{7}+\frac{122}{25}a^{6}-\frac{76}{25}a^{5}+\frac{106}{5}a^{4}-\frac{1249}{25}a^{3}-\frac{1091}{50}a^{2}+\frac{69}{25}a+\frac{198}{25}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1978.70362296 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 1978.70362296 \cdot 1}{2\cdot\sqrt{2125764000000}}\cr\approx \mathstrut & 2.11515743581 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 3*x^7 - 15*x^6 + 33*x^5 - 3*x^4 + 24*x^3 + 6*x^2 - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:C_4$ (as 9T9):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 6 conjugacy class representatives for $C_3^2:C_4$
Character table for $C_3^2:C_4$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 6 siblings: 6.2.7290000.1, 6.2.7290000.2
Degree 12 siblings: deg 12, deg 12
Degree 18 sibling: deg 18
Minimal sibling: 6.2.7290000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.3.0.1}{3} }^{3}$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.3.0.1}{3} }^{3}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{3}$ ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
\(3\) Copy content Toggle raw display 3.9.12.21$x^{9} + 6 x^{4} + 3$$9$$1$$12$$C_3^2:C_4$$[3/2, 3/2]_{2}^{2}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.4.3.1$x^{4} + 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} + 20$$4$$1$$3$$C_4$$[\ ]_{4}$