Properties

Label 9.1.20123648000.1
Degree $9$
Signature $[1, 4]$
Discriminant $20123648000$
Root discriminant \(13.96\)
Ramified primes $2,5,17$
Class number $1$
Class group trivial
Galois group $S_3\wr S_3$ (as 9T31)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4)
 
gp: K = bnfinit(y^9 - 2*y^8 + 5*y^7 + 2*y^6 + 2*y^5 + 6*y^4 + 2*y^3 + 4*y^2 + 8*y + 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4)
 

\( x^{9} - 2x^{8} + 5x^{7} + 2x^{6} + 2x^{5} + 6x^{4} + 2x^{3} + 4x^{2} + 8x + 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(20123648000\) \(\medspace = 2^{15}\cdot 5^{3}\cdot 17^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(13.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{17/6}5^{1/2}17^{1/2}\approx 65.70944271072082$
Ramified primes:   \(2\), \(5\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{170}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{4}$, $\frac{1}{92}a^{8}-\frac{5}{92}a^{7}+\frac{5}{23}a^{6}-\frac{3}{23}a^{5}+\frac{19}{46}a^{4}+\frac{15}{46}a^{3}+\frac{1}{23}a^{2}-\frac{2}{23}a+\frac{8}{23}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29}{92}a^{8}-\frac{99}{92}a^{7}+\frac{129}{46}a^{6}-\frac{105}{46}a^{5}+\frac{34}{23}a^{4}+\frac{67}{46}a^{3}-\frac{17}{23}a^{2}+\frac{34}{23}a+\frac{48}{23}$, $\frac{61}{92}a^{8}-\frac{167}{92}a^{7}+\frac{219}{46}a^{6}-\frac{113}{46}a^{5}+\frac{85}{23}a^{4}+\frac{41}{46}a^{3}+\frac{15}{23}a^{2}+\frac{62}{23}a+\frac{74}{23}$, $\frac{1}{23}a^{8}-\frac{5}{23}a^{7}+\frac{17}{46}a^{6}-\frac{1}{46}a^{5}-\frac{31}{23}a^{4}+\frac{30}{23}a^{3}+\frac{4}{23}a^{2}-\frac{31}{23}a+\frac{9}{23}$, $\frac{119}{46}a^{8}-\frac{148}{23}a^{7}+\frac{362}{23}a^{6}-\frac{71}{46}a^{5}+\frac{76}{23}a^{4}+\frac{359}{23}a^{3}-\frac{107}{23}a^{2}+\frac{260}{23}a+\frac{363}{23}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 171.622310938 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 171.622310938 \cdot 1}{2\cdot\sqrt{20123648000}}\cr\approx \mathstrut & 1.88555785691 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 2*x^8 + 5*x^7 + 2*x^6 + 2*x^5 + 6*x^4 + 2*x^3 + 4*x^2 + 8*x + 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr S_3$ (as 9T31):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$ is not computed

Intermediate fields

3.1.680.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ R ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.9.0.1}{9} }$ R ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.10.6$x^{4} + 4 x^{3} + 12 x^{2} + 10$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.3.0.1$x^{3} + 3 x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(17\) Copy content Toggle raw display 17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.3.0.1$x^{3} + x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.680.2t1.a.a$1$ $ 2^{3} \cdot 5 \cdot 17 $ \(\Q(\sqrt{170}) \) $C_2$ (as 2T1) $1$ $1$
1.680.2t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 17 $ \(\Q(\sqrt{-170}) \) $C_2$ (as 2T1) $1$ $-1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
2.2720.6t3.b.a$2$ $ 2^{5} \cdot 5 \cdot 17 $ 6.2.1257728000.2 $D_{6}$ (as 6T3) $1$ $0$
* 2.680.3t2.a.a$2$ $ 2^{3} \cdot 5 \cdot 17 $ 3.1.680.1 $S_3$ (as 3T2) $1$ $0$
3.7398400.6t8.b.a$3$ $ 2^{10} \cdot 5^{2} \cdot 17^{2}$ 4.2.43520.1 $S_4$ (as 4T5) $1$ $-1$
3.43520.4t5.a.a$3$ $ 2^{9} \cdot 5 \cdot 17 $ 4.2.43520.1 $S_4$ (as 4T5) $1$ $1$
3.7398400.6t11.a.a$3$ $ 2^{10} \cdot 5^{2} \cdot 17^{2}$ 6.0.7398400.2 $S_4\times C_2$ (as 6T11) $1$ $1$
3.10880.6t11.a.a$3$ $ 2^{7} \cdot 5 \cdot 17 $ 6.0.7398400.2 $S_4\times C_2$ (as 6T11) $1$ $-1$
6.342...000.18t319.a.a$6$ $ 2^{16} \cdot 5^{4} \cdot 17^{4}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
6.473497600.18t311.a.a$6$ $ 2^{16} \cdot 5^{2} \cdot 17^{2}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
* 6.29593600.9t31.a.a$6$ $ 2^{12} \cdot 5^{2} \cdot 17^{2}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
6.136...000.18t300.a.a$6$ $ 2^{18} \cdot 5^{4} \cdot 17^{4}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
8.253...000.24t2893.a.a$8$ $ 2^{26} \cdot 5^{6} \cdot 17^{6}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
8.7575961600.12t213.a.a$8$ $ 2^{20} \cdot 5^{2} \cdot 17^{2}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.440...000.36t2217.a.a$12$ $ 2^{37} \cdot 5^{7} \cdot 17^{7}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
12.259...000.36t2210.a.a$12$ $ 2^{36} \cdot 5^{6} \cdot 17^{6}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$
12.381...000.36t2214.a.a$12$ $ 2^{33} \cdot 5^{5} \cdot 17^{5}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.110...000.36t2216.a.a$12$ $ 2^{35} \cdot 5^{7} \cdot 17^{7}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $-2$
12.952...000.18t315.a.a$12$ $ 2^{31} \cdot 5^{5} \cdot 17^{5}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $2$
16.191...000.24t2912.a.a$16$ $ 2^{46} \cdot 5^{8} \cdot 17^{8}$ 9.1.20123648000.1 $S_3\wr S_3$ (as 9T31) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.