# Properties

 Label 8.4.65804544.1 Degree $8$ Signature $[4, 2]$ Discriminant $2^{8}\cdot 3^{2}\cdot 13^{4}$ Root discriminant $9.49$ Ramified primes $2, 3, 13$ Class number $1$ Class group Trivial Galois Group $C_2^2 \wr C_2$ (as 8T18)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 0, -1, 0, -1, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^6 - x^4 - x^2 + 1)
gp: K = bnfinit(x^8 - x^6 - x^4 - x^2 + 1, 1)

## Normalizeddefining polynomial

$$x^{8}$$ $$\mathstrut -\mathstrut x^{6}$$ $$\mathstrut -\mathstrut x^{4}$$ $$\mathstrut -\mathstrut x^{2}$$ $$\mathstrut +\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $8$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[4, 2]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$65804544=2^{8}\cdot 3^{2}\cdot 13^{4}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $9.49$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 13$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $5$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $$a$$,  $$a^{7} - a^{5} - a^{3}$$,  $$a^{6} - a^{4} - a^{2} - a - 1$$,  $$a^{7} - a^{6} - a^{5} + a^{4} - a^{3} + 1$$,  $$a^{7} - a^{6} + a^{4} - 2 a^{3} + a^{2} - a + 1$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$6.04856444985$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$C_2^2\wr C_2$ (as 8T18):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 32 The 14 conjugacy class representatives for $C_2^2 \wr C_2$ Character table for $C_2^2 \wr C_2$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Galois closure: data not computed Degree 8 siblings: data not computed Degree 16 siblings: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.2$x^{8} + 2 x^{7} + 8 x^{2} + 48$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4} 33.2.0.1x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2} 3.4.2.1x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2} 13.4.2.1x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_3.2t1.1c1$1$ $2^{2} \cdot 3$ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
1.3_13.2t1.1c1$1$ $3 \cdot 13$ $x^{2} - x + 10$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_13.2t1.1c1$1$ $2^{2} \cdot 13$ $x^{2} + 13$ $C_2$ (as 2T1) $1$ $-1$
1.2e2_3_13.2t1.1c1$1$ $2^{2} \cdot 3 \cdot 13$ $x^{2} - 39$ $C_2$ (as 2T1) $1$ $1$
1.13.2t1.1c1$1$ $13$ $x^{2} - x - 3$ $C_2$ (as 2T1) $1$ $1$
1.2e2.2t1.1c1$1$ $2^{2}$ $x^{2} + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3.2t1.1c1$1$ $3$ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
2.2e4_3e2_13.4t3.3c1$2$ $2^{4} \cdot 3^{2} \cdot 13$ $x^{4} - 9 x^{2} - 9$ $D_{4}$ (as 4T3) $1$ $0$
2.2e4_3_13.4t3.3c1$2$ $2^{4} \cdot 3 \cdot 13$ $x^{4} - 5 x^{2} + 3$ $D_{4}$ (as 4T3) $1$ $2$
2.3_13.4t3.2c1$2$ $3 \cdot 13$ $x^{4} - x^{3} - x^{2} + x + 1$ $D_{4}$ (as 4T3) $1$ $0$
2.2e4_13.4t3.1c1$2$ $2^{4} \cdot 13$ $x^{4} - 3 x^{2} - 1$ $D_{4}$ (as 4T3) $1$ $0$
2.2e4_3_13.4t3.6c1$2$ $2^{4} \cdot 3 \cdot 13$ $x^{4} + 7 x^{2} + 13$ $D_{4}$ (as 4T3) $1$ $0$
2.2e4_3_13.4t3.4c1$2$ $2^{4} \cdot 3 \cdot 13$ $x^{4} + 5 x^{2} + 3$ $D_{4}$ (as 4T3) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.