Properties

Label 8.0.54390625.1
Degree $8$
Signature $[0, 4]$
Discriminant $5^{6}\cdot 59^{2}$
Root discriminant $9.27$
Ramified primes $5, 59$
Class number $1$
Class group Trivial
Galois group $C_2^2:C_4$ (as 8T10)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 9*x^6 - 17*x^5 + 26*x^4 - 35*x^3 + 35*x^2 - 25*x + 25)
 
gp: K = bnfinit(x^8 - 3*x^7 + 9*x^6 - 17*x^5 + 26*x^4 - 35*x^3 + 35*x^2 - 25*x + 25, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, -25, 35, -35, 26, -17, 9, -3, 1]);
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} + 9 x^{6} - 17 x^{5} + 26 x^{4} - 35 x^{3} + 35 x^{2} - 25 x + 25 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(54390625=5^{6}\cdot 59^{2}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $9.27$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $5, 59$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $4$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{20} a^{6} - \frac{3}{20} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{40} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{13}{40} a^{2} + \frac{1}{4} a - \frac{3}{8}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -\frac{1}{20} a^{7} + \frac{1}{10} a^{6} - \frac{1}{20} a^{5} - \frac{1}{10} a^{4} + \frac{4}{5} a^{3} - \frac{21}{20} a^{2} + a - \frac{5}{4} \) (order $10$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{1}{40} a^{7} - \frac{1}{5} a^{6} + \frac{29}{40} a^{5} - \frac{31}{20} a^{4} + \frac{12}{5} a^{3} - \frac{23}{8} a^{2} + \frac{9}{4} a - \frac{19}{8} \),  \( \frac{3}{40} a^{7} - \frac{1}{5} a^{6} + \frac{19}{40} a^{5} - \frac{21}{20} a^{4} + \frac{7}{5} a^{3} - \frac{49}{40} a^{2} + \frac{7}{4} a - \frac{5}{8} \),  \( \frac{13}{40} a^{7} - \frac{3}{4} a^{6} + \frac{11}{8} a^{5} - \frac{5}{4} a^{4} + \frac{9}{40} a^{2} - \frac{1}{2} a + \frac{27}{8} \)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 18.8385442523 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Galois group

$C_2^2:C_4$ (as 8T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_2^2:C_4$
Character table for $C_2^2:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.7375.1, 4.2.1475.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: 16.0.35847274805742431640625.4
Degree 8 sibling: 8.4.189333765625.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$59$59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.4.2.1$x^{4} + 177 x^{2} + 13924$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$