Properties

Label 8.0.34327881.2
Degree $8$
Signature $[0, 4]$
Discriminant $3^{6}\cdot 7^{2}\cdot 31^{2}$
Root discriminant $8.75$
Ramified primes $3, 7, 31$
Class number $1$
Class group Trivial
Galois Group $C_2^2 \wr C_2$ (as 8T18)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 8, 9, 3, -3, 2, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 2*x^6 - 3*x^5 + 3*x^4 + 9*x^3 + 8*x^2 + 3*x + 1)
gp: K = bnfinit(x^8 - 3*x^7 + 2*x^6 - 3*x^5 + 3*x^4 + 9*x^3 + 8*x^2 + 3*x + 1, 1)

Normalized defining polynomial

\(x^{8} \) \(\mathstrut -\mathstrut 3 x^{7} \) \(\mathstrut +\mathstrut 2 x^{6} \) \(\mathstrut -\mathstrut 3 x^{5} \) \(\mathstrut +\mathstrut 3 x^{4} \) \(\mathstrut +\mathstrut 9 x^{3} \) \(\mathstrut +\mathstrut 8 x^{2} \) \(\mathstrut +\mathstrut 3 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $8$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 4]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(34327881=3^{6}\cdot 7^{2}\cdot 31^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $8.75$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 7, 31$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{51} a^{7} - \frac{5}{51} a^{6} - \frac{22}{51} a^{5} + \frac{7}{51} a^{4} + \frac{23}{51} a^{3} - \frac{20}{51} a^{2} - \frac{20}{51} a + \frac{3}{17}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -\frac{10}{51} a^{7} + \frac{16}{51} a^{6} + \frac{11}{17} a^{5} - \frac{12}{17} a^{4} + \frac{14}{17} a^{3} - \frac{58}{17} a^{2} - \frac{140}{51} a - \frac{22}{51} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{20}{51} a^{7} - \frac{22}{17} a^{6} + \frac{53}{51} a^{5} - \frac{47}{51} a^{4} + \frac{35}{51} a^{3} + \frac{229}{51} a^{2} + \frac{14}{17} a + \frac{10}{51} \),  \( a \),  \( \frac{3}{17} a^{7} - \frac{11}{51} a^{6} - \frac{62}{51} a^{5} + \frac{131}{51} a^{4} - \frac{167}{51} a^{3} + \frac{245}{51} a^{2} + \frac{58}{51} a + \frac{64}{51} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 11.9563264129 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_2^2\wr C_2$ (as 8T18):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 32
The 14 conjugacy class representatives for $C_2^2 \wr C_2$
Character table for $C_2^2 \wr C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.189.1, 4.0.1953.1, 4.0.837.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$7$7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$