Properties

Label 8.0.329042493.3
Degree $8$
Signature $[0, 4]$
Discriminant $329042493$
Root discriminant \(11.61\)
Ramified primes $3,13,43$
Class number $1$
Class group trivial
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139)
 
gp: K = bnfinit(y^8 - 3*y^7 - 7*y^6 + 19*y^5 + 33*y^4 - 50*y^3 - 84*y^2 + 19*y + 139, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139)
 

\( x^{8} - 3x^{7} - 7x^{6} + 19x^{5} + 33x^{4} - 50x^{3} - 84x^{2} + 19x + 139 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(329042493\) \(\medspace = 3^{4}\cdot 13^{3}\cdot 43^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.61\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}13^{3/4}43^{1/2}\approx 77.75930483841216$
Ramified primes:   \(3\), \(13\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{467}a^{7}+\frac{5}{467}a^{6}+\frac{33}{467}a^{5}-\frac{184}{467}a^{4}-\frac{38}{467}a^{3}+\frac{113}{467}a^{2}-\frac{114}{467}a+\frac{41}{467}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{78}{467} a^{7} - \frac{77}{467} a^{6} - \frac{695}{467} a^{5} + \frac{125}{467} a^{4} + \frac{2640}{467} a^{3} + \frac{1342}{467} a^{2} - \frac{3288}{467} a - \frac{4741}{467} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13}{467}a^{7}+\frac{65}{467}a^{6}-\frac{38}{467}a^{5}-\frac{524}{467}a^{4}-\frac{494}{467}a^{3}+\frac{1002}{467}a^{2}+\frac{1787}{467}a+\frac{1000}{467}$, $\frac{1}{467}a^{7}+\frac{5}{467}a^{6}+\frac{33}{467}a^{5}-\frac{184}{467}a^{4}-\frac{38}{467}a^{3}+\frac{580}{467}a^{2}+\frac{353}{467}a-\frac{1360}{467}$, $\frac{468}{467}a^{7}-\frac{462}{467}a^{6}-\frac{4170}{467}a^{5}+\frac{283}{467}a^{4}+\frac{15840}{467}a^{3}+\frac{9920}{467}a^{2}-\frac{18794}{467}a-\frac{32182}{467}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13.4560107035 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 13.4560107035 \cdot 1}{6\cdot\sqrt{329042493}}\cr\approx \mathstrut & 0.192689723472 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 7*x^6 + 19*x^5 + 33*x^4 - 50*x^3 - 84*x^2 + 19*x + 139);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\wr C_2$ (as 8T17):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.117.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 8 sibling: data not computed
Degree 16 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }$ R ${\href{/padicField/5.8.0.1}{8} }$ ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }$ R ${\href{/padicField/17.4.0.1}{4} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }$ R ${\href{/padicField/47.8.0.1}{8} }$ ${\href{/padicField/53.2.0.1}{2} }^{4}$ ${\href{/padicField/59.8.0.1}{8} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(13\) Copy content Toggle raw display 13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
\(43\) Copy content Toggle raw display $\Q_{43}$$x + 40$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 40$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 40$$1$$1$$0$Trivial$[\ ]$
$\Q_{43}$$x + 40$$1$$1$$0$Trivial$[\ ]$
43.2.1.1$x^{2} + 86$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} + 86$$2$$1$$1$$C_2$$[\ ]_{2}$