Properties

Label 8.0.20560078125.1
Degree $8$
Signature $[0, 4]$
Discriminant $20560078125$
Root discriminant \(19.46\)
Ramified primes $3,5,19$
Class number $4$
Class group [2, 2]
Galois group $C_8:C_2$ (as 8T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211)
 
gp: K = bnfinit(y^8 - 2*y^7 + 13*y^6 + y^5 + 55*y^4 + 46*y^3 + 133*y^2 + 73*y + 211, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211)
 

\( x^{8} - 2x^{7} + 13x^{6} + x^{5} + 55x^{4} + 46x^{3} + 133x^{2} + 73x + 211 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(20560078125\) \(\medspace = 3^{6}\cdot 5^{7}\cdot 19^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.46\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{3/4}5^{7/8}19^{1/2}\approx 40.62716288440264$
Ramified primes:   \(3\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  deg 16$^{8}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{111693}a^{7}-\frac{16016}{111693}a^{6}-\frac{1374}{37231}a^{5}-\frac{854}{111693}a^{4}+\frac{49465}{111693}a^{3}-\frac{14313}{37231}a^{2}+\frac{43171}{111693}a+\frac{39349}{111693}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{9}{1201}a^{7}-\frac{24}{1201}a^{6}+\frac{133}{1201}a^{5}-\frac{239}{3603}a^{4}+\frac{1244}{3603}a^{3}+\frac{271}{1201}a^{2}+\frac{647}{3603}a+\frac{739}{3603}$, $\frac{568}{37231}a^{7}-\frac{941}{111693}a^{6}+\frac{4257}{37231}a^{5}+\frac{34024}{111693}a^{4}+\frac{23946}{37231}a^{3}+\frac{34184}{37231}a^{2}+\frac{143852}{111693}a+\frac{221051}{111693}$, $\frac{137}{111693}a^{7}+\frac{2437}{111693}a^{6}-\frac{2083}{37231}a^{5}+\frac{10642}{37231}a^{4}+\frac{221}{37231}a^{3}+\frac{12362}{37231}a^{2}+\frac{69160}{111693}a-\frac{82144}{111693}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9.32364155459 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 9.32364155459 \cdot 4}{2\cdot\sqrt{20560078125}}\cr\approx \mathstrut & 0.202685489258 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 + 13*x^6 + x^5 + 55*x^4 + 46*x^3 + 133*x^2 + 73*x + 211);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\OD_{16}$ (as 8T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_8:C_2$
Character table for $C_8:C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 16
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }$ R R ${\href{/padicField/7.8.0.1}{8} }$ ${\href{/padicField/11.4.0.1}{4} }^{2}$ ${\href{/padicField/13.8.0.1}{8} }$ ${\href{/padicField/17.8.0.1}{8} }$ R ${\href{/padicField/23.8.0.1}{8} }$ ${\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }$ ${\href{/padicField/47.8.0.1}{8} }$ ${\href{/padicField/53.8.0.1}{8} }$ ${\href{/padicField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.8.6.3$x^{8} - 6 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
\(5\) Copy content Toggle raw display 5.8.7.1$x^{8} + 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
\(19\) Copy content Toggle raw display 19.4.0.1$x^{4} + 2 x^{2} + 11 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.2$x^{4} - 2888 x^{3} - 767106 x^{2} - 76532 x + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.285.2t1.a.a$1$ $ 3 \cdot 5 \cdot 19 $ \(\Q(\sqrt{285}) \) $C_2$ (as 2T1) $1$ $1$
1.57.2t1.a.a$1$ $ 3 \cdot 19 $ \(\Q(\sqrt{57}) \) $C_2$ (as 2T1) $1$ $1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.15.4t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\zeta_{15})^+\) $C_4$ (as 4T1) $0$ $1$
1.95.4t1.a.a$1$ $ 5 \cdot 19 $ 4.4.45125.1 $C_4$ (as 4T1) $0$ $1$
1.95.4t1.a.b$1$ $ 5 \cdot 19 $ 4.4.45125.1 $C_4$ (as 4T1) $0$ $1$
* 1.15.4t1.a.b$1$ $ 3 \cdot 5 $ \(\Q(\zeta_{15})^+\) $C_4$ (as 4T1) $0$ $1$
* 2.4275.8t7.b.a$2$ $ 3^{2} \cdot 5^{2} \cdot 19 $ 8.0.20560078125.1 $C_8:C_2$ (as 8T7) $0$ $-2$
* 2.4275.8t7.b.b$2$ $ 3^{2} \cdot 5^{2} \cdot 19 $ 8.0.20560078125.1 $C_8:C_2$ (as 8T7) $0$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.