# Properties

 Label 8.0.1763584.1 Degree $8$ Signature $[0, 4]$ Discriminant $2^{8}\cdot 83^{2}$ Root discriminant $6.04$ Ramified primes $2, 83$ Class number $1$ Class group Trivial Galois Group $S_4\times C_2$ (as 8T24)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 1, 2, -3, 2, 1, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + x^6 + 2*x^5 - 3*x^4 + 2*x^3 + x^2 - 2*x + 1)
gp: K = bnfinit(x^8 - 2*x^7 + x^6 + 2*x^5 - 3*x^4 + 2*x^3 + x^2 - 2*x + 1, 1)

## Normalizeddefining polynomial

$$x^{8}$$ $$\mathstrut -\mathstrut 2 x^{7}$$ $$\mathstrut +\mathstrut x^{6}$$ $$\mathstrut +\mathstrut 2 x^{5}$$ $$\mathstrut -\mathstrut 3 x^{4}$$ $$\mathstrut +\mathstrut 2 x^{3}$$ $$\mathstrut +\mathstrut x^{2}$$ $$\mathstrut -\mathstrut 2 x$$ $$\mathstrut +\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $8$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[0, 4]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$1763584=2^{8}\cdot 83^{2}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $6.04$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 83$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $3$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-a^{7} + a^{6} + a^{5} - 3 a^{4} + a^{3} - 2 a + 1$$ (order $4$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $$a$$,  $$a^{7} - a^{6} + a^{4} + a$$,  $$a^{6} - a^{5} + a^{3} - a^{2} + a + 1$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$0.781195313952$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$C_2\times S_4$ (as 8T24):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 48 The 10 conjugacy class representatives for $S_4\times C_2$ Character table for $S_4\times C_2$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 6 siblings: 6.2.2287148.1, 6.0.27556.1 Degree 8 sibling: 8.4.12149330176.1 Degree 12 siblings: 12.2.1008394404608.1, 12.0.194389282816.1, 12.0.5231045973904.1, 12.4.1339147769319424.1, 12.0.1339147769319424.1, 12.0.1339147769319424.3 Degree 16 sibling: Deg 16 Degree 24 siblings: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4} 8383.2.0.1x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2} 83.4.2.1x^{4} + 249 x^{2} + 27556$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$