Properties

Label 8.0.151807041.1
Degree $8$
Signature $[0, 4]$
Discriminant $3^{4}\cdot 37^{4}$
Root discriminant $10.54$
Ramified primes $3, 37$
Class number $2$
Class group $[2]$
Galois Group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 0, 15, 0, 28, 0, -5, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 5*x^6 + 28*x^4 + 15*x^2 + 9)
gp: K = bnfinit(x^8 - 5*x^6 + 28*x^4 + 15*x^2 + 9, 1)

Normalized defining polynomial

\(x^{8} \) \(\mathstrut -\mathstrut 5 x^{6} \) \(\mathstrut +\mathstrut 28 x^{4} \) \(\mathstrut +\mathstrut 15 x^{2} \) \(\mathstrut +\mathstrut 9 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $8$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 4]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(151807041=3^{4}\cdot 37^{4}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $10.54$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{84} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{5}{28}$, $\frac{1}{504} a^{7} - \frac{1}{168} a^{6} + \frac{1}{18} a^{5} - \frac{1}{6} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{61}{168} a - \frac{5}{56}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Multiplicative Abelian group isomorphic to C2, order $2$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -\frac{5}{84} a^{6} + \frac{1}{3} a^{4} - \frac{5}{3} a^{2} + \frac{3}{28} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{23}{252} a^{7} + \frac{5}{84} a^{6} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{43}{18} a^{3} + \frac{5}{3} a^{2} + \frac{143}{84} a + \frac{11}{28} \),  \( \frac{53}{504} a^{7} + \frac{5}{168} a^{6} - \frac{5}{9} a^{5} - \frac{1}{6} a^{4} + \frac{28}{9} a^{3} + \frac{5}{6} a^{2} + \frac{209}{168} a - \frac{31}{56} \),  \( \frac{5}{168} a^{7} - \frac{5}{168} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{5}{6} a^{3} - \frac{1}{3} a^{2} + \frac{25}{56} a + \frac{3}{56} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 21.2686658839 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{-111}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-3}, \sqrt{37})\), 4.0.333.1 x2, 4.2.4107.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: 4.2.4107.1, 4.0.333.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$37$37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.37.2t1.1c1$1$ $ 37 $ $x^{2} - x - 9$ $C_2$ (as 2T1) $1$ $1$
* 1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
* 1.3_37.2t1.1c1$1$ $ 3 \cdot 37 $ $x^{2} - x + 28$ $C_2$ (as 2T1) $1$ $-1$
*2 2.3_37.4t3.3c1$2$ $ 3 \cdot 37 $ $x^{8} - 5 x^{6} + 28 x^{4} + 15 x^{2} + 9$ $D_4$ (as 8T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.