Properties

Label 8.0.1429145856.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{8}\cdot 3^{4}\cdot 41^{3}$
Root discriminant $13.94$
Ramified primes $2, 3, 41$
Class number $2$
Class group $[2]$
Galois Group $D_{8}$ (as 8T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![58, -62, 75, -30, 21, -2, 5, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 5*x^6 - 2*x^5 + 21*x^4 - 30*x^3 + 75*x^2 - 62*x + 58)
gp: K = bnfinit(x^8 - 2*x^7 + 5*x^6 - 2*x^5 + 21*x^4 - 30*x^3 + 75*x^2 - 62*x + 58, 1)

Normalized defining polynomial

\(x^{8} \) \(\mathstrut -\mathstrut 2 x^{7} \) \(\mathstrut +\mathstrut 5 x^{6} \) \(\mathstrut -\mathstrut 2 x^{5} \) \(\mathstrut +\mathstrut 21 x^{4} \) \(\mathstrut -\mathstrut 30 x^{3} \) \(\mathstrut +\mathstrut 75 x^{2} \) \(\mathstrut -\mathstrut 62 x \) \(\mathstrut +\mathstrut 58 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $8$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 4]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(1429145856=2^{8}\cdot 3^{4}\cdot 41^{3}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $13.94$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 3, 41$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{1888} a^{7} + \frac{65}{1888} a^{6} + \frac{7}{118} a^{5} - \frac{25}{944} a^{4} + \frac{447}{1888} a^{3} + \frac{655}{1888} a^{2} + \frac{2}{59} a - \frac{247}{944}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Multiplicative Abelian group isomorphic to C2, order $2$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( \frac{51}{1888} a^{7} + \frac{11}{1888} a^{6} + \frac{3}{118} a^{5} + \frac{141}{944} a^{4} + \frac{1085}{1888} a^{3} + \frac{837}{1888} a^{2} + \frac{27}{118} a + \frac{1091}{944} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{97}{1888} a^{7} - \frac{67}{1888} a^{6} + \frac{1}{236} a^{5} + \frac{171}{944} a^{4} + \frac{1823}{1888} a^{3} - \frac{893}{1888} a^{2} + \frac{9}{236} a + \frac{1293}{944} \),  \( \frac{5}{944} a^{7} - \frac{265}{944} a^{6} + \frac{81}{236} a^{5} - \frac{243}{472} a^{4} - \frac{597}{944} a^{3} - \frac{4631}{944} a^{2} + \frac{1319}{236} a - \frac{3005}{472} \),  \( \frac{327}{1888} a^{7} + \frac{15}{1888} a^{6} + \frac{47}{118} a^{5} + \frac{793}{944} a^{4} + \frac{7401}{1888} a^{3} + \frac{3201}{1888} a^{2} + \frac{777}{118} a + \frac{5607}{944} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 152.32463607 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$D_8$ (as 8T6):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 16
The 7 conjugacy class representatives for $D_{8}$
Character table for $D_{8}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 4.0.656.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
$3$3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
$41$41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.2$x^{2} + 246$$2$$1$$1$$C_2$$[\ ]_{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2.2t1.1c1$1$ $ 2^{2}$ $x^{2} + 1$ $C_2$ (as 2T1) $1$ $-1$
1.41.2t1.1c1$1$ $ 41 $ $x^{2} - x - 10$ $C_2$ (as 2T1) $1$ $1$
1.2e2_41.2t1.1c1$1$ $ 2^{2} \cdot 41 $ $x^{2} + 41$ $C_2$ (as 2T1) $1$ $-1$
* 2.2e2_41.4t3.1c1$2$ $ 2^{2} \cdot 41 $ $x^{4} - 5 x^{2} - 4$ $D_{4}$ (as 4T3) $1$ $0$
* 2.2e2_3e2_41.8t6.2c1$2$ $ 2^{2} \cdot 3^{2} \cdot 41 $ $x^{8} - 2 x^{7} + 5 x^{6} - 2 x^{5} + 21 x^{4} - 30 x^{3} + 75 x^{2} - 62 x + 58$ $D_{8}$ (as 8T6) $1$ $0$
* 2.2e2_3e2_41.8t6.2c2$2$ $ 2^{2} \cdot 3^{2} \cdot 41 $ $x^{8} - 2 x^{7} + 5 x^{6} - 2 x^{5} + 21 x^{4} - 30 x^{3} + 75 x^{2} - 62 x + 58$ $D_{8}$ (as 8T6) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.