Properties

Label 8.0.116985856.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{12}\cdot 13^{4}$
Root discriminant $10.20$
Ramified primes $2, 13$
Class number $1$
Class group Trivial
Galois Group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, -6, 2, -10, 7, -6, 8, -4, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 8*x^6 - 6*x^5 + 7*x^4 - 10*x^3 + 2*x^2 - 6*x + 9)
gp: K = bnfinit(x^8 - 4*x^7 + 8*x^6 - 6*x^5 + 7*x^4 - 10*x^3 + 2*x^2 - 6*x + 9, 1)

Normalized defining polynomial

\(x^{8} \) \(\mathstrut -\mathstrut 4 x^{7} \) \(\mathstrut +\mathstrut 8 x^{6} \) \(\mathstrut -\mathstrut 6 x^{5} \) \(\mathstrut +\mathstrut 7 x^{4} \) \(\mathstrut -\mathstrut 10 x^{3} \) \(\mathstrut +\mathstrut 2 x^{2} \) \(\mathstrut -\mathstrut 6 x \) \(\mathstrut +\mathstrut 9 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $8$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 4]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(116985856=2^{12}\cdot 13^{4}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $10.20$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{183} a^{7} + \frac{26}{183} a^{6} - \frac{5}{183} a^{5} + \frac{9}{61} a^{4} + \frac{85}{183} a^{3} - \frac{22}{183} a^{2} + \frac{13}{183} a + \frac{6}{61}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -\frac{32}{183} a^{7} + \frac{83}{183} a^{6} - \frac{145}{183} a^{5} + \frac{17}{61} a^{4} - \frac{341}{183} a^{3} + \frac{155}{183} a^{2} + \frac{11}{183} a + \frac{113}{61} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{35}{183} a^{7} - \frac{127}{183} a^{6} + \frac{84}{61} a^{5} - \frac{51}{61} a^{4} + \frac{230}{183} a^{3} - \frac{160}{183} a^{2} - \frac{11}{61} a - \frac{34}{61} \),  \( \frac{5}{183} a^{7} - \frac{53}{183} a^{6} + \frac{158}{183} a^{5} - \frac{77}{61} a^{4} + \frac{59}{183} a^{3} - \frac{110}{183} a^{2} + \frac{248}{183} a - \frac{31}{61} \),  \( \frac{3}{61} a^{7} - \frac{71}{183} a^{6} + \frac{199}{183} a^{5} - \frac{102}{61} a^{4} + \frac{72}{61} a^{3} - \frac{320}{183} a^{2} + \frac{178}{183} a - \frac{7}{61} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 10.9289876348 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{13})\), 4.2.2704.1 x2, 4.0.832.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: 4.2.2704.1, 4.0.832.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.13$x^{8} + 12 x^{4} + 16$$4$$2$$12$$D_4$$[2, 2]^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2.2t1.1c1$1$ $ 2^{2}$ $x^{2} + 1$ $C_2$ (as 2T1) $1$ $-1$
* 1.13.2t1.1c1$1$ $ 13 $ $x^{2} - x - 3$ $C_2$ (as 2T1) $1$ $1$
* 1.2e2_13.2t1.1c1$1$ $ 2^{2} \cdot 13 $ $x^{2} + 13$ $C_2$ (as 2T1) $1$ $-1$
*2 2.2e4_13.4t3.3c1$2$ $ 2^{4} \cdot 13 $ $x^{8} - 4 x^{7} + 8 x^{6} - 6 x^{5} + 7 x^{4} - 10 x^{3} + 2 x^{2} - 6 x + 9$ $D_4$ (as 8T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.