# Properties

 Label 7.3.28291761.1 Degree $7$ Signature $[3, 2]$ Discriminant $3^{6}\cdot 197^{2}$ Root discriminant $11.60$ Ramified primes $3, 197$ Class number $1$ Class group Trivial Galois group $\GL(3,2)$ (as 7T5)

# Related objects

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^7 - 6*x^5 - 6*x^4 + 3*x^3 + 6*x^2 + 2*x - 3)

gp: K = bnfinit(x^7 - 6*x^5 - 6*x^4 + 3*x^3 + 6*x^2 + 2*x - 3, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 2, 6, 3, -6, -6, 0, 1]);

## Normalizeddefining polynomial

$$x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $7$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[3, 2]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$28291761=3^{6}\cdot 197^{2}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $11.60$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $3, 197$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $4$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$6 a^{6} + 4 a^{5} - 33 a^{4} - 58 a^{3} - 23 a^{2} + 19 a + 26$$,  $$a^{6} + a^{5} - 6 a^{4} - 11 a^{3} - 4 a^{2} + 4 a + 5$$,  $$6 a^{6} + 4 a^{5} - 33 a^{4} - 58 a^{3} - 23 a^{2} + 20 a + 26$$,  $$a^{6} - 5 a^{4} - 6 a^{3} - 3 a^{2} + a + 4$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$20.6177124051$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Galois group

$\PSL(2,7)$ (as 7T5):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A non-solvable group of order 168 The 6 conjugacy class representatives for $\GL(3,2)$ Character table for $\GL(3,2)$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Degree 8 sibling: 8.0.9881774573841.1 Degree 14 siblings: Deg 14, Deg 14 Degree 21 sibling: Deg 21 Degree 24 sibling: Deg 24 Degree 28 sibling: Deg 28 Degree 42 siblings: Deg 42, Deg 42, Deg 42 Arithmetically equvalently sibling: 7.3.28291761.2

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.7.0.1}{7} }$ R ${\href{/LocalNumberField/5.7.0.1}{7} }$ ${\href{/LocalNumberField/7.7.0.1}{7} }$ ${\href{/LocalNumberField/11.7.0.1}{7} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.7.0.1}{7} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.7.0.1}{7} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0Trivial[\ ] 3.3.3.2x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2} 197$$\Q_{197}$$x + 2$$1$$1$$0$Trivial$[\ ]$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2} 197.4.2.2x^{4} - 197 x^{2} + 116427$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
3.3143529.42t37.a.a$3$ $3^{4} \cdot 197^{2}$ $x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$ $\GL(3,2)$ (as 7T5) $0$ $-1$
3.3143529.42t37.a.b$3$ $3^{4} \cdot 197^{2}$ $x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$ $\GL(3,2)$ (as 7T5) $0$ $-1$
* 6.28291761.7t5.a.a$6$ $3^{6} \cdot 197^{2}$ $x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$ $\GL(3,2)$ (as 7T5) $1$ $2$
7.9881774573841.8t37.a.a$7$ $3^{8} \cdot 197^{4}$ $x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$ $\GL(3,2)$ (as 7T5) $1$ $-1$
8.88935971164569.21t14.a.a$8$ $3^{10} \cdot 197^{4}$ $x^{7} - 6 x^{5} - 6 x^{4} + 3 x^{3} + 6 x^{2} + 2 x - 3$ $\GL(3,2)$ (as 7T5) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.