# Properties

 Label 6.6.884901456.1 Degree $6$ Signature $[6, 0]$ Discriminant $2^{4}\cdot 3^{3}\cdot 127^{3}$ Root discriminant $30.98$ Ramified primes $2, 3, 127$ Class number $1$ Class group Trivial Galois Group $S_3$ (as 6T2)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1524, 0, 484, 0, -44, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 44*x^4 + 484*x^2 - 1524)
gp: K = bnfinit(x^6 - 44*x^4 + 484*x^2 - 1524, 1)

## Normalizeddefining polynomial

$$x^{6}$$ $$\mathstrut -\mathstrut 44 x^{4}$$ $$\mathstrut +\mathstrut 484 x^{2}$$ $$\mathstrut -\mathstrut 1524$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $6$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[6, 0]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$884901456=2^{4}\cdot 3^{3}\cdot 127^{3}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $30.98$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 127$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{76} a^{4} + \frac{7}{38} a^{2} - \frac{1}{2} a + \frac{1}{19}$, $\frac{1}{76} a^{5} - \frac{5}{76} a^{3} - \frac{1}{2} a^{2} - \frac{17}{38} a - \frac{1}{2}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $5$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $$\frac{3}{76} a^{4} - \frac{55}{38} a^{2} + \frac{1}{2} a + \frac{155}{19}$$,  $$\frac{3}{76} a^{4} - \frac{55}{38} a^{2} - \frac{1}{2} a + \frac{155}{19}$$,  $$\frac{1}{76} a^{5} + \frac{9}{76} a^{4} - \frac{43}{76} a^{3} - \frac{92}{19} a^{2} + \frac{77}{19} a + \frac{1291}{38}$$,  $$\frac{1}{19} a^{5} + \frac{5}{38} a^{4} - \frac{153}{76} a^{3} - \frac{98}{19} a^{2} + \frac{483}{38} a + \frac{1217}{38}$$,  $$\frac{1}{38} a^{5} - \frac{67}{76} a^{3} - a^{2} + \frac{251}{38} a + \frac{23}{2}$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$831.594402037$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$S_3$ (as 6T2):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 6 The 3 conjugacy class representatives for $S_3$ Character table for $S_3$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling algebras

 Twin sextic algebra: 3.3.1524.1 $\times$ $$\Q$$ $\times$ $$\Q$$ $\times$ $$\Q$$ Degree 3 sibling: 3.3.1524.1

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2} 33.2.1.1x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2} 3.2.1.1x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$127$127.2.1.2$x^{2} + 1143$$2$$1$$1$$C_2$$[\ ]_{2} 127.2.1.2x^{2} + 1143$$2$$1$$1$$C_2$$[\ ]_{2}$
127.2.1.2$x^{2} + 1143$$2$$1$$1$$C_2$$[\ ]_{2}$