Properties

Label 6.4.842751.1
Degree $6$
Signature $[4, 1]$
Discriminant $-\,3^{3}\cdot 7^{4}\cdot 13$
Root discriminant $9.72$
Ramified primes $3, 7, 13$
Class number $1$
Class group Trivial
Galois Group $A_4\times C_2$ (as 6T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13, -16, -3, 12, -4, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 12*x^3 - 3*x^2 - 16*x + 13)
gp: K = bnfinit(x^6 - 2*x^5 - 4*x^4 + 12*x^3 - 3*x^2 - 16*x + 13, 1)

Normalized defining polynomial

\(x^{6} \) \(\mathstrut -\mathstrut 2 x^{5} \) \(\mathstrut -\mathstrut 4 x^{4} \) \(\mathstrut +\mathstrut 12 x^{3} \) \(\mathstrut -\mathstrut 3 x^{2} \) \(\mathstrut -\mathstrut 16 x \) \(\mathstrut +\mathstrut 13 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $6$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[4, 1]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-842751=-\,3^{3}\cdot 7^{4}\cdot 13\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $9.72$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 7, 13$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $4$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - 2 a^{3} + 3 a^{2} + a - \frac{7}{2} \),  \( \frac{1}{2} a^{3} - \frac{3}{2} a + \frac{1}{2} \),  \( a - 1 \),  \( \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{2} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 5.14793885149 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_2\times A_4$ (as 6T6):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 24
The 8 conjugacy class representatives for $A_4\times C_2$
Character table for $A_4\times C_2$

Intermediate fields

\(\Q(\zeta_{7})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: 4.0.8281.1 $\times$ \(\Q(\sqrt{-39}) \)
Degree 8 sibling: 8.0.5554571841.5
Degree 12 siblings: 12.4.120028742912169.1, 12.0.20284857552156561.2

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_13.2t1.1c1$1$ $ 3 \cdot 13 $ $x^{2} - x + 10$ $C_2$ (as 2T1) $1$ $-1$
1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.3_7_13.6t1.8c1$1$ $ 3 \cdot 7 \cdot 13 $ $x^{6} - x^{5} + 25 x^{4} - 17 x^{3} + 295 x^{2} - 81 x + 1429$ $C_6$ (as 6T1) $0$ $-1$
1.3_7_13.6t1.8c2$1$ $ 3 \cdot 7 \cdot 13 $ $x^{6} - x^{5} + 25 x^{4} - 17 x^{3} + 295 x^{2} - 81 x + 1429$ $C_6$ (as 6T1) $0$ $-1$
1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
3.7e2_13e2.4t4.1c1$3$ $ 7^{2} \cdot 13^{2}$ $x^{4} - x^{3} + 5 x^{2} - 4 x + 3$ $A_4$ (as 4T4) $1$ $-1$
3.3e3_7e2_13.6t6.1c1$3$ $ 3^{3} \cdot 7^{2} \cdot 13 $ $x^{6} - 2 x^{5} - 4 x^{4} + 12 x^{3} - 3 x^{2} - 16 x + 13$ $A_4\times C_2$ (as 6T6) $1$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.