Properties

Label 6.4.288576.1
Degree $6$
Signature $[4, 1]$
Discriminant $-288576$
Root discriminant $8.13$
Ramified primes $2, 3, 167$
Class number $1$
Class group trivial
Galois group $C_3^2:D_4$ (as 6T13)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - x^2 + 2*x + 1)
 
gp: K = bnfinit(x^6 - 2*x^5 - x^2 + 2*x + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -1, 0, 0, -2, 1]);
 

\( x^{6} - 2 x^{5} - x^{2} + 2 x + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[4, 1]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-288576\)\(\medspace = -\,2^{6}\cdot 3^{3}\cdot 167\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $8.13$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 3, 167$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( a^{5} - 2 a^{4} - a + 2 \),  \( a^{5} - 2 a^{4} + a^{3} - a^{2} - a + 1 \),  \( a^{2} - a \),  \( a^{5} - 2 a^{4} + a^{3} - 2 a^{2} + 1 \)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 2.68447846766 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{4}\cdot(2\pi)^{1}\cdot 2.68447846766 \cdot 1}{2\sqrt{288576}}\approx 0.251188455477$

Galois group

$S_3\wr C_2$ (as 6T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3^2:D_4$
Character table for $C_3^2:D_4$

Intermediate fields

\(\Q(\sqrt{3}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 6.0.55889556.1
Degree 6 sibling: 6.0.55889556.1
Degree 9 sibling: 9.3.8048096064.1
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18, Deg 18
Degree 24 siblings: Deg 24, Deg 24
Degree 36 siblings: Deg 36, Deg 36, Deg 36

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$167$$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.3.0.1$x^{3} - x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
1.2004.2t1.a.a$1$ $ 2^{2} \cdot 3 \cdot 167 $ $x^{2} + 501$ $C_2$ (as 2T1) $1$ $-1$
* 1.12.2t1.a.a$1$ $ 2^{2} \cdot 3 $ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
1.167.2t1.a.a$1$ $ 167 $ $x^{2} - x + 42$ $C_2$ (as 2T1) $1$ $-1$
2.2004.4t3.d.a$2$ $ 2^{2} \cdot 3 \cdot 167 $ $x^{4} + 5 x^{2} + 48$ $D_{4}$ (as 4T3) $1$ $0$
4.670674672.12t34.a.a$4$ $ 2^{4} \cdot 3^{2} \cdot 167^{3}$ $x^{6} - 2 x^{5} - x^{2} + 2 x + 1$ $C_3^2:D_4$ (as 6T13) $1$ $-2$
* 4.24048.6t13.a.a$4$ $ 2^{4} \cdot 3^{2} \cdot 167 $ $x^{6} - 2 x^{5} - x^{2} + 2 x + 1$ $C_3^2:D_4$ (as 6T13) $1$ $2$
4.334668.6t13.a.a$4$ $ 2^{2} \cdot 3 \cdot 167^{2}$ $x^{6} - 2 x^{5} - x^{2} + 2 x + 1$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.48192192.12t34.a.a$4$ $ 2^{6} \cdot 3^{3} \cdot 167^{2}$ $x^{6} - 2 x^{5} - x^{2} + 2 x + 1$ $C_3^2:D_4$ (as 6T13) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.