Properties

Label 6.2.65480464.1
Degree $6$
Signature $[2, 2]$
Discriminant $2^{4}\cdot 7^{2}\cdot 17^{4}$
Root discriminant $20.08$
Ramified primes $2, 7, 17$
Class number $3$
Class group $[3]$
Galois group $C_3^2:C_4$ (as 6T10)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 + x^4 - 6*x^3 - 11*x^2 + 9)
 
gp: K = bnfinit(x^6 - 2*x^5 + x^4 - 6*x^3 - 11*x^2 + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 0, -11, -6, 1, -2, 1]);
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} + x^{4} - 6 x^{3} - 11 x^{2} + 9 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[2, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(65480464=2^{4}\cdot 7^{2}\cdot 17^{4}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $20.08$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 7, 17$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a + \frac{1}{4}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{2} a^{2} - \frac{17}{4} a - \frac{13}{4} \),  \( \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{2}{3} a^{3} - a^{2} - \frac{23}{3} a - \frac{9}{2} \),  \( \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{2}{3} a^{3} - \frac{1}{2} a^{2} - \frac{5}{12} a - \frac{1}{4} \)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 38.6127321983 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Galois group

$C_3:S_3.C_2$ (as 6T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 36
The 6 conjugacy class representatives for $C_3^2:C_4$
Character table for $C_3^2:C_4$

Intermediate fields

\(\Q(\sqrt{17}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Galois closure: data not computed
Twin sextic algebra: 6.2.16370116.1
Degree 6 sibling: 6.2.16370116.1
Degree 9 sibling: 9.1.3709075402816.1
Degree 12 siblings: Deg 12, Deg 12
Degree 18 sibling: Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ R ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$17$17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.3.2$x^{4} - 153$$4$$1$$3$$C_4$$[\ ]_{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.17.2t1.a.a$1$ $ 17 $ $x^{2} - x - 4$ $C_2$ (as 2T1) $1$ $1$
1.119.4t1.a.a$1$ $ 7 \cdot 17 $ $x^{4} - x^{3} + 28 x^{2} + x + 239$ $C_4$ (as 4T1) $0$ $-1$
1.119.4t1.a.b$1$ $ 7 \cdot 17 $ $x^{4} - x^{3} + 28 x^{2} + x + 239$ $C_4$ (as 4T1) $0$ $-1$
* 4.3851792.6t10.b.a$4$ $ 2^{4} \cdot 7^{2} \cdot 17^{3}$ $x^{6} - 2 x^{5} + x^{4} - 6 x^{3} - 11 x^{2} + 9$ $C_3^2:C_4$ (as 6T10) $1$ $0$
4.962948.6t10.b.a$4$ $ 2^{2} \cdot 7^{2} \cdot 17^{3}$ $x^{6} - 2 x^{5} + x^{4} - 6 x^{3} - 11 x^{2} + 9$ $C_3^2:C_4$ (as 6T10) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.