# Properties

 Label 6.2.4008825445.1 Degree $6$ Signature $[2, 2]$ Discriminant $4008825445$ Root discriminant $39.86$ Ramified primes $5, 929$ Class number $1$ Class group trivial Galois group $C_3^2:D_4$ (as 6T13)

# Related objects

Show commands for: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - x^4 + 35*x^3 - 32*x^2 - 33*x + 40)

gp: K = bnfinit(x^6 - 2*x^5 - x^4 + 35*x^3 - 32*x^2 - 33*x + 40, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![40, -33, -32, 35, -1, -2, 1]);

$$x^{6} - 2 x^{5} - x^{4} + 35 x^{3} - 32 x^{2} - 33 x + 40$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[2, 2]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$4008825445$$$$\medspace = 5\cdot 929^{3}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $39.86$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $5, 929$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $1$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{116} a^{5} + \frac{17}{116} a^{4} - \frac{13}{58} a^{3} + \frac{5}{116} a^{2} - \frac{53}{116} a + \frac{1}{29}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $3$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{33}{4} a^{2} + \frac{1}{4} a - 9$$,  $$\frac{99}{116} a^{5} + \frac{349}{116} a^{4} + \frac{221}{58} a^{3} - \frac{317}{116} a^{2} - \frac{2521}{116} a + \frac{621}{29}$$,  $$\frac{73}{4} a^{5} - \frac{219}{4} a^{4} + \frac{73}{2} a^{3} + \frac{165}{4} a^{2} - \frac{257}{4} a + 23$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$1258.57969668$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{2}\cdot(2\pi)^{2}\cdot 1258.57969668 \cdot 1}{2\sqrt{4008825445}}\approx 1.56950202612$

## Galois group

$S_3\wr C_2$ (as 6T13):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A solvable group of order 72 The 9 conjugacy class representatives for $C_3^2:D_4$ Character table for $C_3^2:D_4$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling algebras

 Twin sextic algebra: 6.2.116125.1 Degree 6 sibling: 6.2.116125.1 Degree 9 sibling: data not computed Degree 12 siblings: data not computed Degree 18 siblings: data not computed Degree 24 siblings: data not computed Degree 36 siblings: data not computed

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$$\Q_{5}$$x + 2$$1$$1$$0Trivial[\ ] \Q_{5}$$x + 2$$1$$1$$0Trivial[\ ] 5.2.1.2x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
929Data not computed

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
1.4645.2t1.a.a$1$ $5 \cdot 929$ $x^{2} - x - 1161$ $C_2$ (as 2T1) $1$ $1$
* 1.929.2t1.a.a$1$ $929$ $x^{2} - x - 232$ $C_2$ (as 2T1) $1$ $1$
1.5.2t1.a.a$1$ $5$ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
2.4645.4t3.b.a$2$ $5 \cdot 929$ $x^{4} - x^{3} + 15 x^{2} - 8 x + 64$ $D_{4}$ (as 4T3) $1$ $-2$
4.107880125.12t34.b.a$4$ $5^{3} \cdot 929^{2}$ $x^{6} - 2 x^{5} - x^{4} + 35 x^{3} - 32 x^{2} - 33 x + 40$ $C_3^2:D_4$ (as 6T13) $1$ $0$
* 4.4315205.6t13.b.a$4$ $5 \cdot 929^{2}$ $x^{6} - 2 x^{5} - x^{4} + 35 x^{3} - 32 x^{2} - 33 x + 40$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.23225.6t13.b.a$4$ $5^{2} \cdot 929$ $x^{6} - 2 x^{5} - x^{4} + 35 x^{3} - 32 x^{2} - 33 x + 40$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.20044127225.12t34.b.a$4$ $5^{2} \cdot 929^{3}$ $x^{6} - 2 x^{5} - x^{4} + 35 x^{3} - 32 x^{2} - 33 x + 40$ $C_3^2:D_4$ (as 6T13) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.