Properties

Label 5.3.23679.1
Degree $5$
Signature $[3, 1]$
Discriminant $-\,3^{3}\cdot 877$
Root discriminant $7.50$
Ramified primes $3, 877$
Class number $1$
Class group Trivial
Galois Group $S_5$ (as 5T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -2, 1, 0, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 + x^2 - 2*x + 3)
gp: K = bnfinit(x^5 - 2*x^4 + x^2 - 2*x + 3, 1)

Normalized defining polynomial

\(x^{5} \) \(\mathstrut -\mathstrut 2 x^{4} \) \(\mathstrut +\mathstrut x^{2} \) \(\mathstrut -\mathstrut 2 x \) \(\mathstrut +\mathstrut 3 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $5$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[3, 1]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-23679=-\,3^{3}\cdot 877\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $7.50$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 877$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a - 1 \),  \( a^{4} - a^{3} - a^{2} + a - 2 \),  \( a^{4} - a^{3} - a^{2} + a - 1 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 2.65227818165 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$S_5$ (as 5T5):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 120
The 7 conjugacy class representatives for $S_5$
Character table for $S_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 6 sibling: data not computed
Degree 10 siblings: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }$ R ${\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.4.3.2$x^{4} - 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
877Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_877.2t1.1c1$1$ $ 3 \cdot 877 $ $x^{2} - x + 658$ $C_2$ (as 2T1) $1$ $-1$
4.3e3_877e3.10t12.1c1$4$ $ 3^{3} \cdot 877^{3}$ $x^{5} - 2 x^{4} + x^{2} - 2 x + 3$ $S_5$ (as 5T5) $1$ $-2$
4.3e3_877.5t5.1c1$4$ $ 3^{3} \cdot 877 $ $x^{5} - 2 x^{4} + x^{2} - 2 x + 3$ $S_5$ (as 5T5) $1$ $2$
5.3e4_877e2.10t13.1c1$5$ $ 3^{4} \cdot 877^{2}$ $x^{5} - 2 x^{4} + x^{2} - 2 x + 3$ $S_5$ (as 5T5) $1$ $1$
5.3e3_877e3.6t14.1c1$5$ $ 3^{3} \cdot 877^{3}$ $x^{5} - 2 x^{4} + x^{2} - 2 x + 3$ $S_5$ (as 5T5) $1$ $-1$
6.3e5_877e3.20t35.1c1$6$ $ 3^{5} \cdot 877^{3}$ $x^{5} - 2 x^{4} + x^{2} - 2 x + 3$ $S_5$ (as 5T5) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.