Properties

Label 46.46.445...125.1
Degree $46$
Signature $[46, 0]$
Discriminant $4.453\times 10^{89}$
Root discriminant \(88.90\)
Ramified primes $5,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1)
 
gp: K = bnfinit(y^46 - y^45 - 67*y^44 + 62*y^43 + 2017*y^42 - 1712*y^41 - 36151*y^40 + 27871*y^39 + 431244*y^38 - 298794*y^37 - 3629323*y^36 + 2234528*y^35 + 22311838*y^34 - 12065268*y^33 - 102471229*y^32 + 48099584*y^31 + 356957890*y^30 - 143761015*y^29 - 952979825*y^28 + 325518500*y^27 + 1962978291*y^26 - 562037616*y^25 - 3130570732*y^24 + 742002577*y^23 + 3866596078*y^22 - 748176098*y^21 - 3686881837*y^20 + 573064052*y^19 + 2694891598*y^18 - 329962748*y^17 - 1492308292*y^16 + 140457727*y^15 + 615043968*y^14 - 43115073*y^13 - 183867242*y^12 + 9203272*y^11 + 38414233*y^10 - 1297868*y^9 - 5308732*y^8 + 114257*y^7 + 445588*y^6 - 6578*y^5 - 19657*y^4 + 352*y^3 + 342*y^2 - 12*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1)
 

\( x^{46} - x^{45} - 67 x^{44} + 62 x^{43} + 2017 x^{42} - 1712 x^{41} - 36151 x^{40} + 27871 x^{39} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[46, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(445\!\cdots\!125\) \(\medspace = 5^{23}\cdot 47^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(88.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}47^{22/23}\approx 88.89615014384839$
Ramified primes:   \(5\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(235=5\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{235}(1,·)$, $\chi_{235}(131,·)$, $\chi_{235}(4,·)$, $\chi_{235}(6,·)$, $\chi_{235}(136,·)$, $\chi_{235}(9,·)$, $\chi_{235}(14,·)$, $\chi_{235}(16,·)$, $\chi_{235}(21,·)$, $\chi_{235}(24,·)$, $\chi_{235}(159,·)$, $\chi_{235}(34,·)$, $\chi_{235}(36,·)$, $\chi_{235}(166,·)$, $\chi_{235}(169,·)$, $\chi_{235}(49,·)$, $\chi_{235}(51,·)$, $\chi_{235}(54,·)$, $\chi_{235}(56,·)$, $\chi_{235}(59,·)$, $\chi_{235}(61,·)$, $\chi_{235}(191,·)$, $\chi_{235}(64,·)$, $\chi_{235}(96,·)$, $\chi_{235}(194,·)$, $\chi_{235}(196,·)$, $\chi_{235}(71,·)$, $\chi_{235}(74,·)$, $\chi_{235}(204,·)$, $\chi_{235}(206,·)$, $\chi_{235}(79,·)$, $\chi_{235}(81,·)$, $\chi_{235}(84,·)$, $\chi_{235}(216,·)$, $\chi_{235}(89,·)$, $\chi_{235}(224,·)$, $\chi_{235}(144,·)$, $\chi_{235}(101,·)$, $\chi_{235}(209,·)$, $\chi_{235}(106,·)$, $\chi_{235}(111,·)$, $\chi_{235}(189,·)$, $\chi_{235}(119,·)$, $\chi_{235}(121,·)$, $\chi_{235}(126,·)$, $\chi_{235}(149,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $\frac{1}{281}a^{44}+\frac{66}{281}a^{43}+\frac{10}{281}a^{42}+\frac{20}{281}a^{41}+\frac{90}{281}a^{40}+\frac{32}{281}a^{39}+\frac{96}{281}a^{38}+\frac{76}{281}a^{37}+\frac{108}{281}a^{36}+\frac{75}{281}a^{35}+\frac{50}{281}a^{34}+\frac{79}{281}a^{33}+\frac{74}{281}a^{32}+\frac{56}{281}a^{31}-\frac{50}{281}a^{30}+\frac{19}{281}a^{29}+\frac{123}{281}a^{28}-\frac{140}{281}a^{27}+\frac{123}{281}a^{26}-\frac{22}{281}a^{25}-\frac{79}{281}a^{24}+\frac{134}{281}a^{23}+\frac{109}{281}a^{22}-\frac{123}{281}a^{21}-\frac{102}{281}a^{20}+\frac{54}{281}a^{19}+\frac{37}{281}a^{18}-\frac{87}{281}a^{17}-\frac{85}{281}a^{16}+\frac{92}{281}a^{15}-\frac{114}{281}a^{14}-\frac{51}{281}a^{13}+\frac{42}{281}a^{12}+\frac{52}{281}a^{11}+\frac{41}{281}a^{10}-\frac{119}{281}a^{9}+\frac{32}{281}a^{8}-\frac{18}{281}a^{7}-\frac{107}{281}a^{6}+\frac{119}{281}a^{5}-\frac{113}{281}a^{4}-\frac{114}{281}a^{3}+\frac{40}{281}a^{2}-\frac{132}{281}a+\frac{67}{281}$, $\frac{1}{62\!\cdots\!59}a^{45}+\frac{10\!\cdots\!22}{62\!\cdots\!59}a^{44}-\frac{19\!\cdots\!27}{62\!\cdots\!59}a^{43}-\frac{15\!\cdots\!46}{62\!\cdots\!59}a^{42}+\frac{21\!\cdots\!12}{62\!\cdots\!59}a^{41}+\frac{15\!\cdots\!47}{62\!\cdots\!59}a^{40}-\frac{18\!\cdots\!30}{62\!\cdots\!59}a^{39}+\frac{26\!\cdots\!69}{62\!\cdots\!59}a^{38}-\frac{92\!\cdots\!63}{62\!\cdots\!59}a^{37}-\frac{39\!\cdots\!96}{62\!\cdots\!59}a^{36}+\frac{53\!\cdots\!65}{62\!\cdots\!59}a^{35}-\frac{26\!\cdots\!37}{62\!\cdots\!59}a^{34}+\frac{26\!\cdots\!48}{62\!\cdots\!59}a^{33}-\frac{30\!\cdots\!18}{62\!\cdots\!59}a^{32}-\frac{62\!\cdots\!42}{62\!\cdots\!59}a^{31}+\frac{12\!\cdots\!03}{62\!\cdots\!59}a^{30}+\frac{19\!\cdots\!83}{62\!\cdots\!59}a^{29}-\frac{22\!\cdots\!68}{62\!\cdots\!59}a^{28}+\frac{28\!\cdots\!71}{62\!\cdots\!59}a^{27}+\frac{41\!\cdots\!45}{62\!\cdots\!59}a^{26}+\frac{24\!\cdots\!76}{62\!\cdots\!59}a^{25}-\frac{11\!\cdots\!42}{62\!\cdots\!59}a^{24}+\frac{21\!\cdots\!13}{62\!\cdots\!59}a^{23}+\frac{42\!\cdots\!82}{22\!\cdots\!39}a^{22}+\frac{10\!\cdots\!28}{62\!\cdots\!59}a^{21}-\frac{25\!\cdots\!18}{62\!\cdots\!59}a^{20}+\frac{33\!\cdots\!86}{62\!\cdots\!59}a^{19}+\frac{25\!\cdots\!19}{62\!\cdots\!59}a^{18}+\frac{13\!\cdots\!09}{62\!\cdots\!59}a^{17}-\frac{73\!\cdots\!74}{62\!\cdots\!59}a^{16}-\frac{11\!\cdots\!48}{62\!\cdots\!59}a^{15}+\frac{24\!\cdots\!81}{62\!\cdots\!59}a^{14}-\frac{24\!\cdots\!46}{62\!\cdots\!59}a^{13}-\frac{15\!\cdots\!09}{62\!\cdots\!59}a^{12}-\frac{25\!\cdots\!28}{62\!\cdots\!59}a^{11}-\frac{25\!\cdots\!91}{62\!\cdots\!59}a^{10}-\frac{14\!\cdots\!82}{62\!\cdots\!59}a^{9}+\frac{30\!\cdots\!54}{62\!\cdots\!59}a^{8}-\frac{16\!\cdots\!73}{62\!\cdots\!59}a^{7}+\frac{78\!\cdots\!12}{62\!\cdots\!59}a^{6}+\frac{78\!\cdots\!35}{62\!\cdots\!59}a^{5}+\frac{14\!\cdots\!30}{62\!\cdots\!59}a^{4}-\frac{19\!\cdots\!46}{62\!\cdots\!59}a^{3}+\frac{81\!\cdots\!30}{62\!\cdots\!59}a^{2}+\frac{22\!\cdots\!75}{62\!\cdots\!59}a-\frac{26\!\cdots\!20}{62\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $45$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - x^45 - 67*x^44 + 62*x^43 + 2017*x^42 - 1712*x^41 - 36151*x^40 + 27871*x^39 + 431244*x^38 - 298794*x^37 - 3629323*x^36 + 2234528*x^35 + 22311838*x^34 - 12065268*x^33 - 102471229*x^32 + 48099584*x^31 + 356957890*x^30 - 143761015*x^29 - 952979825*x^28 + 325518500*x^27 + 1962978291*x^26 - 562037616*x^25 - 3130570732*x^24 + 742002577*x^23 + 3866596078*x^22 - 748176098*x^21 - 3686881837*x^20 + 573064052*x^19 + 2694891598*x^18 - 329962748*x^17 - 1492308292*x^16 + 140457727*x^15 + 615043968*x^14 - 43115073*x^13 - 183867242*x^12 + 9203272*x^11 + 38414233*x^10 - 1297868*x^9 - 5308732*x^8 + 114257*x^7 + 445588*x^6 - 6578*x^5 - 19657*x^4 + 352*x^3 + 342*x^2 - 12*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $46$ $46$ R $46$ $23^{2}$ $46$ $46$ $23^{2}$ $46$ $23^{2}$ $23^{2}$ $46$ $23^{2}$ $46$ R $46$ $23^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display Deg $46$$23$$2$$44$