Properties

Label 46.46.155...357.1
Degree $46$
Signature $[46, 0]$
Discriminant $1.560\times 10^{99}$
Root discriminant \(143.34\)
Ramified primes $13,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721)
 
gp: K = bnfinit(y^46 - 21*y^45 + 96*y^44 + 959*y^43 - 9950*y^42 - 1825*y^41 + 335613*y^40 - 834537*y^39 - 5657221*y^38 + 26988590*y^37 + 44109968*y^36 - 443216122*y^35 + 100002271*y^34 + 4479212294*y^33 - 6237187098*y^32 - 28571535040*y^31 + 72586582734*y^30 + 103336700236*y^29 - 480319603281*y^28 - 66786211526*y^27 + 2018290007358*y^26 - 1355370040843*y^25 - 5285056712013*y^24 + 7582856629140*y^23 + 7178933729591*y^22 - 20645533933596*y^21 + 1046437412802*y^20 + 31269803408789*y^19 - 21465428316192*y^18 - 22251983955427*y^17 + 34519826963183*y^16 - 2181540751435*y^15 - 22787259295206*y^14 + 14052337420836*y^13 + 3424903604271*y^12 - 7356504751997*y^11 + 2524580197417*y^10 + 719437437556*y^9 - 822188957900*y^8 + 216958911989*y^7 + 16546070228*y^6 - 23274902617*y^5 + 5444167373*y^4 - 387991071*y^3 - 44784143*y^2 + 9031748*y - 400721, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721)
 

\( x^{46} - 21 x^{45} + 96 x^{44} + 959 x^{43} - 9950 x^{42} - 1825 x^{41} + 335613 x^{40} - 834537 x^{39} + \cdots - 400721 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[46, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(155\!\cdots\!357\) \(\medspace = 13^{23}\cdot 47^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(143.34\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{1/2}47^{22/23}\approx 143.3407350582306$
Ramified primes:   \(13\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(611=13\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{611}(1,·)$, $\chi_{611}(259,·)$, $\chi_{611}(519,·)$, $\chi_{611}(324,·)$, $\chi_{611}(521,·)$, $\chi_{611}(12,·)$, $\chi_{611}(14,·)$, $\chi_{611}(272,·)$, $\chi_{611}(131,·)$, $\chi_{611}(404,·)$, $\chi_{611}(534,·)$, $\chi_{611}(25,·)$, $\chi_{611}(27,·)$, $\chi_{611}(285,·)$, $\chi_{611}(545,·)$, $\chi_{611}(155,·)$, $\chi_{611}(168,·)$, $\chi_{611}(363,·)$, $\chi_{611}(298,·)$, $\chi_{611}(300,·)$, $\chi_{611}(430,·)$, $\chi_{611}(157,·)$, $\chi_{611}(51,·)$, $\chi_{611}(53,·)$, $\chi_{611}(183,·)$, $\chi_{611}(441,·)$, $\chi_{611}(571,·)$, $\chi_{611}(573,·)$, $\chi_{611}(64,·)$, $\chi_{611}(194,·)$, $\chi_{611}(196,·)$, $\chi_{611}(79,·)$, $\chi_{611}(337,·)$, $\chi_{611}(378,·)$, $\chi_{611}(142,·)$, $\chi_{611}(220,·)$, $\chi_{611}(222,·)$, $\chi_{611}(350,·)$, $\chi_{611}(144,·)$, $\chi_{611}(482,·)$, $\chi_{611}(209,·)$, $\chi_{611}(103,·)$, $\chi_{611}(365,·)$, $\chi_{611}(495,·)$, $\chi_{611}(118,·)$, $\chi_{611}(506,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $\frac{1}{283}a^{43}-\frac{68}{283}a^{42}+\frac{22}{283}a^{41}+\frac{111}{283}a^{40}-\frac{66}{283}a^{39}+\frac{129}{283}a^{38}-\frac{99}{283}a^{37}+\frac{117}{283}a^{36}-\frac{99}{283}a^{35}+\frac{63}{283}a^{34}+\frac{61}{283}a^{33}-\frac{40}{283}a^{32}+\frac{138}{283}a^{31}+\frac{129}{283}a^{30}+\frac{91}{283}a^{29}+\frac{80}{283}a^{28}+\frac{59}{283}a^{27}+\frac{104}{283}a^{26}+\frac{58}{283}a^{25}+\frac{115}{283}a^{24}+\frac{55}{283}a^{23}-\frac{104}{283}a^{22}+\frac{129}{283}a^{21}+\frac{85}{283}a^{20}+\frac{91}{283}a^{19}-\frac{118}{283}a^{18}-\frac{32}{283}a^{17}-\frac{79}{283}a^{16}-\frac{24}{283}a^{15}-\frac{128}{283}a^{14}-\frac{19}{283}a^{13}+\frac{114}{283}a^{12}-\frac{71}{283}a^{11}-\frac{15}{283}a^{10}-\frac{139}{283}a^{9}+\frac{6}{283}a^{8}-\frac{37}{283}a^{7}+\frac{84}{283}a^{6}-\frac{46}{283}a^{5}-\frac{141}{283}a^{4}-\frac{128}{283}a^{3}+\frac{120}{283}a^{2}+\frac{25}{283}a-\frac{89}{283}$, $\frac{1}{1595837}a^{44}+\frac{2259}{1595837}a^{43}+\frac{694748}{1595837}a^{42}-\frac{762886}{1595837}a^{41}+\frac{675939}{1595837}a^{40}-\frac{354100}{1595837}a^{39}-\frac{482977}{1595837}a^{38}-\frac{511558}{1595837}a^{37}+\frac{288291}{1595837}a^{36}+\frac{351821}{1595837}a^{35}+\frac{627762}{1595837}a^{34}-\frac{115906}{1595837}a^{33}+\frac{345142}{1595837}a^{32}-\frac{235972}{1595837}a^{31}-\frac{774843}{1595837}a^{30}-\frac{122952}{1595837}a^{29}+\frac{8495}{1595837}a^{28}-\frac{651890}{1595837}a^{27}+\frac{325268}{1595837}a^{26}-\frac{723541}{1595837}a^{25}-\frac{445783}{1595837}a^{24}+\frac{499743}{1595837}a^{23}+\frac{638817}{1595837}a^{22}+\frac{196690}{1595837}a^{21}+\frac{794450}{1595837}a^{20}-\frac{121452}{1595837}a^{19}+\frac{31305}{1595837}a^{18}-\frac{249437}{1595837}a^{17}-\frac{797684}{1595837}a^{16}+\frac{331168}{1595837}a^{15}+\frac{432831}{1595837}a^{14}+\frac{56083}{1595837}a^{13}+\frac{71918}{1595837}a^{12}+\frac{8247}{1595837}a^{11}+\frac{226448}{1595837}a^{10}-\frac{131290}{1595837}a^{9}+\frac{147218}{1595837}a^{8}-\frac{3096}{1595837}a^{7}+\frac{378240}{1595837}a^{6}-\frac{126993}{1595837}a^{5}-\frac{570483}{1595837}a^{4}-\frac{787326}{1595837}a^{3}-\frac{90050}{1595837}a^{2}-\frac{360754}{1595837}a+\frac{151741}{1595837}$, $\frac{1}{19\!\cdots\!51}a^{45}-\frac{36\!\cdots\!81}{19\!\cdots\!51}a^{44}-\frac{21\!\cdots\!58}{19\!\cdots\!51}a^{43}-\frac{30\!\cdots\!01}{19\!\cdots\!51}a^{42}-\frac{88\!\cdots\!83}{19\!\cdots\!51}a^{41}-\frac{36\!\cdots\!33}{19\!\cdots\!51}a^{40}+\frac{29\!\cdots\!83}{19\!\cdots\!51}a^{39}+\frac{63\!\cdots\!83}{19\!\cdots\!51}a^{38}+\frac{41\!\cdots\!88}{19\!\cdots\!51}a^{37}-\frac{30\!\cdots\!36}{19\!\cdots\!51}a^{36}+\frac{48\!\cdots\!16}{19\!\cdots\!51}a^{35}+\frac{69\!\cdots\!96}{19\!\cdots\!51}a^{34}+\frac{84\!\cdots\!10}{19\!\cdots\!51}a^{33}+\frac{39\!\cdots\!70}{19\!\cdots\!51}a^{32}+\frac{30\!\cdots\!67}{19\!\cdots\!51}a^{31}-\frac{62\!\cdots\!67}{19\!\cdots\!51}a^{30}-\frac{35\!\cdots\!81}{19\!\cdots\!51}a^{29}-\frac{58\!\cdots\!73}{19\!\cdots\!51}a^{28}+\frac{61\!\cdots\!90}{19\!\cdots\!51}a^{27}-\frac{86\!\cdots\!68}{19\!\cdots\!51}a^{26}-\frac{22\!\cdots\!86}{19\!\cdots\!51}a^{25}-\frac{82\!\cdots\!50}{19\!\cdots\!51}a^{24}-\frac{37\!\cdots\!09}{19\!\cdots\!51}a^{23}+\frac{53\!\cdots\!15}{19\!\cdots\!51}a^{22}-\frac{61\!\cdots\!19}{19\!\cdots\!51}a^{21}+\frac{68\!\cdots\!08}{19\!\cdots\!51}a^{20}+\frac{90\!\cdots\!19}{19\!\cdots\!51}a^{19}-\frac{36\!\cdots\!70}{19\!\cdots\!51}a^{18}+\frac{50\!\cdots\!89}{19\!\cdots\!51}a^{17}+\frac{78\!\cdots\!34}{19\!\cdots\!51}a^{16}+\frac{29\!\cdots\!65}{19\!\cdots\!51}a^{15}-\frac{54\!\cdots\!89}{19\!\cdots\!51}a^{14}-\frac{48\!\cdots\!21}{19\!\cdots\!51}a^{13}-\frac{55\!\cdots\!07}{19\!\cdots\!51}a^{12}+\frac{68\!\cdots\!44}{19\!\cdots\!51}a^{11}+\frac{36\!\cdots\!76}{19\!\cdots\!51}a^{10}+\frac{36\!\cdots\!97}{19\!\cdots\!51}a^{9}+\frac{46\!\cdots\!54}{19\!\cdots\!51}a^{8}+\frac{35\!\cdots\!15}{19\!\cdots\!51}a^{7}-\frac{81\!\cdots\!79}{19\!\cdots\!51}a^{6}+\frac{84\!\cdots\!37}{19\!\cdots\!51}a^{5}-\frac{16\!\cdots\!08}{19\!\cdots\!51}a^{4}-\frac{82\!\cdots\!61}{19\!\cdots\!51}a^{3}-\frac{54\!\cdots\!46}{19\!\cdots\!51}a^{2}-\frac{40\!\cdots\!10}{19\!\cdots\!51}a-\frac{43\!\cdots\!37}{19\!\cdots\!51}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $45$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 21*x^45 + 96*x^44 + 959*x^43 - 9950*x^42 - 1825*x^41 + 335613*x^40 - 834537*x^39 - 5657221*x^38 + 26988590*x^37 + 44109968*x^36 - 443216122*x^35 + 100002271*x^34 + 4479212294*x^33 - 6237187098*x^32 - 28571535040*x^31 + 72586582734*x^30 + 103336700236*x^29 - 480319603281*x^28 - 66786211526*x^27 + 2018290007358*x^26 - 1355370040843*x^25 - 5285056712013*x^24 + 7582856629140*x^23 + 7178933729591*x^22 - 20645533933596*x^21 + 1046437412802*x^20 + 31269803408789*x^19 - 21465428316192*x^18 - 22251983955427*x^17 + 34519826963183*x^16 - 2181540751435*x^15 - 22787259295206*x^14 + 14052337420836*x^13 + 3424903604271*x^12 - 7356504751997*x^11 + 2524580197417*x^10 + 719437437556*x^9 - 822188957900*x^8 + 216958911989*x^7 + 16546070228*x^6 - 23274902617*x^5 + 5444167373*x^4 - 387991071*x^3 - 44784143*x^2 + 9031748*x - 400721);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $46$ $23^{2}$ $46$ $46$ $46$ R $23^{2}$ $46$ $23^{2}$ $23^{2}$ $46$ $46$ $46$ $23^{2}$ R $23^{2}$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display Deg $46$$23$$2$$44$