Properties

Label 46.0.313...000.1
Degree $46$
Signature $[0, 23]$
Discriminant $-3.133\times 10^{103}$
Root discriminant \(177.79\)
Ramified primes $2,5,47$
Class number not computed
Class group not computed
Galois group $C_{46}$ (as 46T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881)
 
gp: K = bnfinit(y^46 - 2*y^45 + 72*y^44 - 134*y^43 + 2897*y^42 - 5084*y^41 + 82681*y^40 - 137302*y^39 + 1842969*y^38 - 2901188*y^37 + 33715618*y^36 - 50329496*y^35 + 521486533*y^34 - 737794426*y^33 + 6950305674*y^32 - 9307575658*y^31 + 80830810890*y^30 - 102256954530*y^29 + 827118937400*y^28 - 985841461150*y^27 + 7485767552466*y^26 - 8377390757582*y^25 + 60086694646762*y^24 - 62865657320214*y^23 + 428031087265258*y^22 - 416431202055206*y^21 + 2702388396162372*y^20 - 2428526763878674*y^19 + 15070583707733498*y^18 - 12405066876040346*y^17 + 73818176925261607*y^16 - 55061310307265284*y^15 + 314907625765820988*y^14 - 209899452928866436*y^13 + 1155981973200414012*y^12 - 675750258479061684*y^11 + 3589387159241937348*y^10 - 1792691375628199716*y^9 + 9196110333365905782*y^8 - 3775417247902685064*y^7 + 18723655041560322848*y^6 - 5938123951190841976*y^5 + 28494792795353584212*y^4 - 6222180685713906064*y^3 + 28908055782216940872*y^2 - 3269673707415701984*y + 14713531683370658881, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881)
 

\( x^{46} - 2 x^{45} + 72 x^{44} - 134 x^{43} + 2897 x^{42} - 5084 x^{41} + 82681 x^{40} + \cdots + 14\!\cdots\!81 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $46$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 23]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-313\!\cdots\!000\) \(\medspace = -\,2^{46}\cdot 5^{23}\cdot 47^{44}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(177.79\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{1/2}47^{22/23}\approx 177.79230028769678$
Ramified primes:   \(2\), \(5\), \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-5}) \)
$\card{ \Gal(K/\Q) }$:  $46$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(940=2^{2}\cdot 5\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{940}(1,·)$, $\chi_{940}(259,·)$, $\chi_{940}(901,·)$, $\chi_{940}(519,·)$, $\chi_{940}(521,·)$, $\chi_{940}(779,·)$, $\chi_{940}(401,·)$, $\chi_{940}(899,·)$, $\chi_{940}(661,·)$, $\chi_{940}(921,·)$, $\chi_{940}(541,·)$, $\chi_{940}(159,·)$, $\chi_{940}(801,·)$, $\chi_{940}(679,·)$, $\chi_{940}(299,·)$, $\chi_{940}(639,·)$, $\chi_{940}(559,·)$, $\chi_{940}(439,·)$, $\chi_{940}(441,·)$, $\chi_{940}(59,·)$, $\chi_{940}(61,·)$, $\chi_{940}(319,·)$, $\chi_{940}(581,·)$, $\chi_{940}(841,·)$, $\chi_{940}(459,·)$, $\chi_{940}(79,·)$, $\chi_{940}(81,·)$, $\chi_{940}(341,·)$, $\chi_{940}(121,·)$, $\chi_{940}(601,·)$, $\chi_{940}(719,·)$, $\chi_{940}(101,·)$, $\chi_{940}(479,·)$, $\chi_{940}(739,·)$, $\chi_{940}(741,·)$, $\chi_{940}(721,·)$, $\chi_{940}(379,·)$, $\chi_{940}(361,·)$, $\chi_{940}(619,·)$, $\chi_{940}(239,·)$, $\chi_{940}(241,·)$, $\chi_{940}(659,·)$, $\chi_{940}(759,·)$, $\chi_{940}(761,·)$, $\chi_{940}(119,·)$, $\chi_{940}(21,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4194304}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$, $a^{42}$, $a^{43}$, $\frac{1}{79523}a^{44}+\frac{10961}{79523}a^{43}-\frac{29855}{79523}a^{42}+\frac{3226}{79523}a^{41}+\frac{2478}{79523}a^{40}+\frac{31640}{79523}a^{39}+\frac{38124}{79523}a^{38}+\frac{5898}{79523}a^{37}+\frac{37752}{79523}a^{36}+\frac{23175}{79523}a^{35}+\frac{1780}{79523}a^{34}+\frac{7668}{79523}a^{33}+\frac{29019}{79523}a^{32}+\frac{17195}{79523}a^{31}-\frac{10857}{79523}a^{30}+\frac{18763}{79523}a^{29}+\frac{22279}{79523}a^{28}-\frac{17057}{79523}a^{27}-\frac{18893}{79523}a^{26}+\frac{17299}{79523}a^{25}+\frac{5294}{79523}a^{24}+\frac{6139}{79523}a^{23}-\frac{21231}{79523}a^{22}-\frac{14114}{79523}a^{21}+\frac{25821}{79523}a^{20}+\frac{11604}{79523}a^{19}-\frac{35238}{79523}a^{18}+\frac{27579}{79523}a^{17}+\frac{14415}{79523}a^{16}+\frac{13124}{79523}a^{15}-\frac{26994}{79523}a^{14}+\frac{18031}{79523}a^{13}-\frac{19859}{79523}a^{12}+\frac{35489}{79523}a^{11}-\frac{10860}{79523}a^{10}+\frac{35098}{79523}a^{9}-\frac{2363}{79523}a^{8}+\frac{24232}{79523}a^{7}+\frac{27635}{79523}a^{6}-\frac{18521}{79523}a^{5}-\frac{26429}{79523}a^{4}-\frac{27518}{79523}a^{3}-\frac{20801}{79523}a^{2}-\frac{22474}{79523}a+\frac{11979}{79523}$, $\frac{1}{10\!\cdots\!83}a^{45}-\frac{40\!\cdots\!40}{10\!\cdots\!83}a^{44}+\frac{45\!\cdots\!65}{10\!\cdots\!83}a^{43}+\frac{67\!\cdots\!67}{10\!\cdots\!83}a^{42}+\frac{49\!\cdots\!81}{10\!\cdots\!83}a^{41}-\frac{45\!\cdots\!76}{10\!\cdots\!83}a^{40}+\frac{22\!\cdots\!34}{10\!\cdots\!83}a^{39}-\frac{45\!\cdots\!01}{10\!\cdots\!83}a^{38}-\frac{40\!\cdots\!39}{10\!\cdots\!83}a^{37}+\frac{67\!\cdots\!18}{10\!\cdots\!83}a^{36}-\frac{69\!\cdots\!42}{10\!\cdots\!83}a^{35}-\frac{33\!\cdots\!98}{10\!\cdots\!83}a^{34}-\frac{45\!\cdots\!84}{10\!\cdots\!83}a^{33}+\frac{20\!\cdots\!02}{10\!\cdots\!83}a^{32}-\frac{33\!\cdots\!78}{10\!\cdots\!83}a^{31}-\frac{16\!\cdots\!03}{10\!\cdots\!83}a^{30}-\frac{29\!\cdots\!18}{10\!\cdots\!83}a^{29}+\frac{46\!\cdots\!56}{10\!\cdots\!83}a^{28}-\frac{66\!\cdots\!42}{10\!\cdots\!83}a^{27}-\frac{73\!\cdots\!63}{10\!\cdots\!83}a^{26}+\frac{16\!\cdots\!16}{10\!\cdots\!83}a^{25}-\frac{41\!\cdots\!38}{10\!\cdots\!83}a^{24}-\frac{50\!\cdots\!41}{10\!\cdots\!83}a^{23}-\frac{45\!\cdots\!04}{10\!\cdots\!83}a^{22}-\frac{12\!\cdots\!01}{10\!\cdots\!83}a^{21}+\frac{34\!\cdots\!40}{10\!\cdots\!83}a^{20}+\frac{32\!\cdots\!55}{10\!\cdots\!83}a^{19}-\frac{43\!\cdots\!85}{10\!\cdots\!83}a^{18}+\frac{92\!\cdots\!11}{10\!\cdots\!83}a^{17}-\frac{40\!\cdots\!86}{10\!\cdots\!83}a^{16}+\frac{51\!\cdots\!32}{10\!\cdots\!83}a^{15}-\frac{50\!\cdots\!60}{10\!\cdots\!83}a^{14}-\frac{35\!\cdots\!76}{37\!\cdots\!43}a^{13}+\frac{12\!\cdots\!45}{10\!\cdots\!83}a^{12}+\frac{44\!\cdots\!52}{10\!\cdots\!83}a^{11}+\frac{30\!\cdots\!82}{37\!\cdots\!01}a^{10}-\frac{39\!\cdots\!56}{10\!\cdots\!83}a^{9}-\frac{82\!\cdots\!74}{10\!\cdots\!83}a^{8}+\frac{26\!\cdots\!98}{10\!\cdots\!83}a^{7}+\frac{10\!\cdots\!82}{10\!\cdots\!83}a^{6}+\frac{29\!\cdots\!42}{10\!\cdots\!83}a^{5}-\frac{38\!\cdots\!39}{10\!\cdots\!83}a^{4}-\frac{43\!\cdots\!41}{10\!\cdots\!83}a^{3}+\frac{16\!\cdots\!69}{10\!\cdots\!83}a^{2}+\frac{65\!\cdots\!37}{10\!\cdots\!83}a+\frac{40\!\cdots\!10}{18\!\cdots\!41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 2*x^45 + 72*x^44 - 134*x^43 + 2897*x^42 - 5084*x^41 + 82681*x^40 - 137302*x^39 + 1842969*x^38 - 2901188*x^37 + 33715618*x^36 - 50329496*x^35 + 521486533*x^34 - 737794426*x^33 + 6950305674*x^32 - 9307575658*x^31 + 80830810890*x^30 - 102256954530*x^29 + 827118937400*x^28 - 985841461150*x^27 + 7485767552466*x^26 - 8377390757582*x^25 + 60086694646762*x^24 - 62865657320214*x^23 + 428031087265258*x^22 - 416431202055206*x^21 + 2702388396162372*x^20 - 2428526763878674*x^19 + 15070583707733498*x^18 - 12405066876040346*x^17 + 73818176925261607*x^16 - 55061310307265284*x^15 + 314907625765820988*x^14 - 209899452928866436*x^13 + 1155981973200414012*x^12 - 675750258479061684*x^11 + 3589387159241937348*x^10 - 1792691375628199716*x^9 + 9196110333365905782*x^8 - 3775417247902685064*x^7 + 18723655041560322848*x^6 - 5938123951190841976*x^5 + 28494792795353584212*x^4 - 6222180685713906064*x^3 + 28908055782216940872*x^2 - 3269673707415701984*x + 14713531683370658881);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{46}$ (as 46T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 46
The 46 conjugacy class representatives for $C_{46}$
Character table for $C_{46}$ is not computed

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\zeta_{47})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $23^{2}$ R $23^{2}$ $46$ $46$ $46$ $46$ $23^{2}$ $23^{2}$ $46$ $46$ $23^{2}$ $23^{2}$ R $46$ $46$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $46$$2$$23$$46$
\(5\) Copy content Toggle raw display Deg $46$$2$$23$$23$
\(47\) Copy content Toggle raw display 47.23.22.1$x^{23} + 47$$23$$1$$22$$C_{23}$$[\ ]_{23}$
47.23.22.1$x^{23} + 47$$23$$1$$22$$C_{23}$$[\ ]_{23}$