# SageMath code for working with number field 45.45.40844008098536976898528926596491646392449447921859499771891413268750045487853347665634360111802937199321.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^45 - 3*x^44 - 126*x^43 + 350*x^42 + 7095*x^41 - 18207*x^40 - 237254*x^39 + 560949*x^38 + 5280957*x^37 - 11465163*x^36 - 83127609*x^35 + 164960568*x^34 + 959694733*x^33 - 1729668720*x^32 - 8316855543*x^31 + 13495839126*x^30 + 54911329452*x^29 - 79318322604*x^28 - 278624618803*x^27 + 353264598507*x^26 + 1090386630918*x^25 - 1193881051406*x^24 - 3286918329246*x^23 + 3054422504946*x^22 + 7584376524784*x^21 - 5885779838802*x^20 - 13239515051214*x^19 + 8489225140885*x^18 + 17170281215082*x^17 - 9118144480932*x^16 - 16115327765898*x^15 + 7281918623109*x^14 + 10535410010724*x^13 - 4323241543716*x^12 - 4518883017183*x^11 + 1877328461526*x^10 + 1138556965481*x^9 - 554295751305*x^8 - 124509763362*x^7 + 91825606123*x^6 - 3656082528*x^5 - 5240896776*x^4 + 961503906*x^3 - 1541688*x^2 - 11847522*x + 756289) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^45 - 3*x^44 - 126*x^43 + 350*x^42 + 7095*x^41 - 18207*x^40 - 237254*x^39 + 560949*x^38 + 5280957*x^37 - 11465163*x^36 - 83127609*x^35 + 164960568*x^34 + 959694733*x^33 - 1729668720*x^32 - 8316855543*x^31 + 13495839126*x^30 + 54911329452*x^29 - 79318322604*x^28 - 278624618803*x^27 + 353264598507*x^26 + 1090386630918*x^25 - 1193881051406*x^24 - 3286918329246*x^23 + 3054422504946*x^22 + 7584376524784*x^21 - 5885779838802*x^20 - 13239515051214*x^19 + 8489225140885*x^18 + 17170281215082*x^17 - 9118144480932*x^16 - 16115327765898*x^15 + 7281918623109*x^14 + 10535410010724*x^13 - 4323241543716*x^12 - 4518883017183*x^11 + 1877328461526*x^10 + 1138556965481*x^9 - 554295751305*x^8 - 124509763362*x^7 + 91825606123*x^6 - 3656082528*x^5 - 5240896776*x^4 + 961503906*x^3 - 1541688*x^2 - 11847522*x + 756289) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]